Computing the smallest xed point of nonexpansive mappings arising in game theory and static analysis of programs

The problem of computing the smallest xed point of a monotone map arises classically in the study of zero-sum repeated games. It also arises in static analysis of programs by abstract interpretation. In this context, the discount rate may be negative. We characterize the minimality of a xed point in terms of the nonlinear spectral radius of a certain semidierential. We apply this characterization to design a policy iteration algorithm, which applies to the case of nite state and action spaces. The algorithm returns a locally minimal xed point, which turns out to be globally minimal when the discount rate is nonnegative.

[1]  Helmut Seidl,et al.  Precise Fixpoint Computation Through Strategy Iteration , 2007, ESOP.

[2]  W. Sudderth,et al.  Discrete Gambling and Stochastic Games , 1996 .

[3]  Ankur Taly,et al.  Static Analysis by Policy Iteration on Relational Domains , 2007, ESOP.

[4]  J. Filar,et al.  Competitive Markov Decision Processes , 1996 .

[5]  R. Nussbaum Convexity and log convexity for the spectral radius , 1986 .

[6]  John Mallet-Paret,et al.  Eigenvalues for a class of homogeneous cone maps arising from max-plus operators , 2002 .

[7]  Patrick Cousot,et al.  Comparing the Galois Connection and Widening/Narrowing Approaches to Abstract Interpretation , 1992, PLILP.

[8]  Jeremy Gunawardena,et al.  Min-max functions , 1994, Discret. Event Dyn. Syst..

[9]  Geert Jan Olsder,et al.  Eigenvalues of dynamic max-min systems , 1991, Discret. Event Dyn. Syst..

[10]  Patrick Cousot,et al.  Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints , 1977, POPL.

[11]  S. Ovchinnikov Max-Min Representation of Piecewise Linear Functions , 2000, math/0009026.

[12]  R. Nussbaum Hilbert's Projective Metric and Iterated Nonlinear Maps , 1988 .

[13]  S. Gaubert,et al.  The Perron-Frobenius theorem for homogeneous, monotone functions , 2001, math/0105091.

[14]  R. Tyrrell Rockafellar,et al.  Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.

[15]  Eric Goubault,et al.  A Policy Iteration Algorithm for Computing Fixed Points in Static Analysis of Programs , 2005, CAV.