Relation between microstructure, technical properties and neutron radiation shielding efficiency of concrete

[1]  E. Horszczaruk,et al.  Investigation of gamma ray shielding efficiency and physicomechanical performances of heavyweight concrete subjected to high temperature , 2019, Construction and Building Materials.

[2]  T. Piotrowski,et al.  Influence of gadolinium oxide and ulexite on cement hydration and technical properties of mortars for neutron radiation shielding purposes , 2019, Construction and Building Materials.

[3]  A. Mesbahi,et al.  Shielding properties of the ordinary concrete loaded with micro- and nano-particles against neutron and gamma radiations. , 2018, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[4]  E. Horszczaruk,et al.  The effect of elevated temperature on the properties of cement mortars containing nanosilica and heavyweight aggregates , 2017 .

[5]  E. Kavaz,et al.  Determination of gamma and fast neutron shielding parameters of magnetite concretes , 2016 .

[6]  B. Pomaro,et al.  A Review on Radiation Damage in Concrete for Nuclear Facilities , 2016 .

[7]  S. K. Rao,et al.  Experimental studies in Ultrasonic Pulse Velocity of roller compacted concrete pavement containing fly ash and M-sand , 2016 .

[8]  B. Cetin,et al.  Determination of Radiation Attenuation Coefficients in Concretes Containing Different Wastes , 2016 .

[9]  M. Maciak,et al.  Experimental investigation on radiation shielding of high performance concrete for nuclear and radiotherapy facilities , 2016 .

[10]  Zainah Ibrahim,et al.  Nondestructive test methods for concrete bridges: A review , 2016 .

[11]  Alida Mazzoli,et al.  Evaluation of the early-age-shrinkage of Fiber Reinforced Concrete (FRC) using image analysis methods , 2015 .

[12]  T. Piotrowski,et al.  Zastosowanie metody ultradźwiękowej do oceny właściwości mechanicznych betonów osłonowych , 2015 .

[13]  T. Piotrowski,et al.  Polymers in Concrete – The Shielding against Neutron Radiation , 2015 .

[14]  T. Korkut,et al.  Neutron shielding qualities and gamma ray buildup factors of concretes containing limonite ore , 2015 .

[15]  K. Ann,et al.  Porosity generation arising from steel fibre in concrete , 2015 .

[16]  Peter C. Taylor,et al.  Image analysis applications on assessing static stability and flowability of self-consolidating concrete , 2015 .

[17]  T. Piotrowski,et al.  Experiments on Neutron Transport through Concrete Member and the Potential for the Use in Material Investigation , 2015 .

[18]  T. Piotrowski,et al.  NGS-Concrete - New Generation Shielding Concrete against Ionizing Radiation - the Potential Evaluation and Preliminary Investigation , 2015 .

[19]  E. Horszczaruk,et al.  Mechanical Properties of Shielding Concrete with Magnetite Aggregate Subjected to High Temperature , 2015 .

[20]  J. Wawrzeńczyk,et al.  A Method of Analyzing the Porous Microstructure in Air-Entrained Concrete on the Basis on 2D Image Analysis , 2015 .

[21]  O. Yucel,et al.  Radiation Shielding Properties of Spark Plasma Sintered Boron Carbide-Aluminium Composites , 2015 .

[22]  I. Akkurt,et al.  Barite Effect on Radiation Shielding Properties of Cotton-Polyester Fabric , 2015 .

[23]  Dawei Zhang,et al.  Empirical Estimation of Pore Size Distribution in Cement, Mortar, and Concrete , 2014 .

[24]  T. Piotrowski,et al.  Diagnostyka konstrukcji betonowych metodą ultradźwiękową pośrednią , 2014 .

[25]  Andrzej Garbacz,et al.  UIR-Scanner Potential to Defect Detection in Concrete , 2013 .

[26]  Xudong Chen,et al.  Influence of porosity on compressive and tensile strength of cement mortar , 2013 .

[27]  T. Piotrowski,et al.  Monte-Carlo aided design of neutron shielding concretes , 2013 .

[28]  C. Souga,et al.  CALCULATION OF FAST NEUTRON REMOVAL CROSS-SECTIONS FOR DIFFERENT SHIELDING MATERIALS , 2013 .

[29]  I. Akkurt,et al.  The effect of barite proportion on neutron and gamma-ray shielding , 2013 .

[30]  S. Vairam,et al.  Hydrazine Complexes of Lanthanides with 3-Acetoxy- and 4-Acetoxybenzoic Acids: Spectroscopic, Thermal, and XRD Studies , 2013 .

[31]  Wei Chen,et al.  Enhancing microstructure and durability of concrete from ground granulated blast furnace slag and metakaolin as cement replacement materials , 2013 .

[32]  R. Hussain,et al.  γ-Radiation Shielding Properties of High Strength High Performance Concretes Prepared with Different Types of Normal and Heavy Aggregates , 2013 .

[33]  Mohammed M. Al-Humaiqani Effect of Compressive Strength on γ-Radiation Attenuation Coefficients for High Performance Concrete , 2013 .

[34]  T. Piotrowski,et al.  Monte Carlo simulations for optimization of neutron shielding concrete , 2012 .

[35]  Umit Atici,et al.  Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network , 2011, Expert Syst. Appl..

[36]  S. Mirhosseini The Effects of Nuclear Radiation on Aging Reinforced Concrete Structures in Nuclear Power Plants , 2010 .

[37]  Iskender Akkurt,et al.  Radiation shielding of concrete containing zeolite , 2010 .

[38]  T. Korkut,et al.  Investigation of fast neutron shielding characteristics depending on boron percentages of MgB2, NaBH4 and KBH4 , 2010 .

[39]  A. El-Khayatt Calculation of fast neutron removal cross-sections for some compounds and materials , 2010 .

[40]  M. Yusof,et al.  CEMENT-BORON CARBIDE CONCRETE AS RADIATION SHIELDING MATERIAL , 2010 .

[41]  A. El-Khayatt,et al.  MERCSF-N: A program for the calculation of fast neutron removal cross sections in composite shields , 2009 .

[42]  E. Gallego,et al.  Testing of a High-Density Concrete as Neutron Shielding Material , 2009 .

[43]  Iskender Akkurt,et al.  The effect of barite rate on some physical and mechanical properties of concrete , 2006 .

[44]  Iskender Akkurt,et al.  Radiation shielding of concretes containing different aggregates , 2006 .

[45]  A. Abdo Calculation of the cross-sections for fast neutrons and gamma-rays in concrete shields , 2002 .

[46]  J. G. Cabrera,et al.  Measurement of porosity as a predictor of the durability performance of concrete with and without condensed silica fume , 2001 .

[47]  J. Chermant,et al.  STUDY OF PHASE DISPERSION IN CONCRETE BY IMAGE ANALYSIS , 2001 .

[48]  S M Seltzer,et al.  Calculation of photon mass energy-transfer and mass energy-absorption coefficients. , 1993, Radiation research.

[49]  James Wood,et al.  Computational Methods in Reactor Shielding , 1982 .

[50]  A. Profio Radiation Shielding and Dosimetry , 1979 .

[51]  I. Moore,et al.  Capillary Porosity in Hardened Cement Paste , 1973 .

[52]  S. Brunauer,et al.  Hardened Portland cement pastes of low porosity V. Compressive strength , 1972 .

[53]  Stephen Brunauer,et al.  Hardened portland cement pastes of low porosity I. Materials and experimental methods , 1972 .