Electrical properties of Ni–Mn–Co–(Fe) oxide thick-film NTC thermistors prepared by screen printing

Ni–Mn–Co–(Fe) oxide thick films were coated on an alumina substrate by a screen-printing technique. The electrical properties of the thick films, as a function of composition and sintering temperature, were investigated. All the thick-film negative temperature coefficient (NTC) thermistors prepared showed a linear relationship between log resistivity and the reciprocal of the absolute temperature, indicative of NTC characteristics. As the amount of Mn3O4 in (Ni2−xMnxCo1.0)O4 (0.6≤x≤1.8) thermistors increased, the resistivity and the coefficient of temperature sensitivity decreased to a minimum value and then increased again. Also, at a given Ni–Mn oxide content, the resistivity and the coefficient of temperature sensitivity for (Ni1.0Mn1.0Co1−xFex)O4 (0.25≤x≤1.0) and (Ni0.75Mn1.25Co1−xFex)O4 (0.25≤x≤0.75) thermistors increased with increasing Fe2O3 content. The influence of composition and sintering temperature on the electrical properties of the thermistors is discussed.

[1]  A. Rousset,et al.  Structural properties of nickel manganite NixMn3−xO4 with 0.5 ⩽x ⩽ 1 , 1990 .

[2]  E. Macklen Electrical conductivity and cation distribution in nickel manganite , 1986 .

[3]  Bohdan S. Butkiewicz,et al.  Thermoelectrical degradation processes in NTC thermistors for in-rush current protection of electronic circuits , 2001, Microelectron. Reliab..

[4]  F. Golestani-Fard,et al.  Oxygen evolution during the formation and sintering of nickel-manganese oxide spinels for thermistor applications , 1987 .

[5]  B. Gillot,et al.  Ionic configuration and cation distribution in cubic nickel manganite spinels NixMn3−xO4 (0.57 , 1992 .

[6]  S. E. Dorris,et al.  Electrical Properties and Cation Valencies in Mn3O4 , 1988 .

[7]  M. Suzuki A.c. hopping conduction in Mn-Co-Ni-Cu complex oxide semiconductors with spinel structure , 1980 .

[8]  M. Hosseini The effect of cation composition on the electrical properties and aging of Mn-Co-Ni thermistors , 2000 .

[9]  Renaud Metz,et al.  Electrical properties of N.T.C. thermistors made of manganite ceramics of general spinel structure: Mn3 − x − x′MxNx′O4 (0 ≤ x + x′ ≤ 1; M and N being Ni, Co or Cu). Aging phenomenon study , 2000 .

[10]  Abel Rousset,et al.  Thin films of nickel manganese oxide for NTC thermistor applications , 1993 .

[11]  D. S. Erickson,et al.  Nonstoichiometry, cation distribution, and electrical properties in Fe3O4‒CoFe2O4 at high temperature , 1985 .

[12]  R. Arnott,et al.  Preparation, semiconduction and low-temperature magnetization of the system Ni1−xMn12+xO4 , 1962 .

[13]  R. Rojas,et al.  Preparation and characterization of spinel-type Mn–Ni–Co–O negative temperature coefficient ceramic thermistors , 1998 .

[14]  A. Rousset,et al.  The preparation, characterization and electrical properties of copper manganite spinels, CuxMn3−xO4, 0 ⩽x ⩽ 1 , 1989 .

[15]  Howard J. Sanders,et al.  High-tech ceramics , 1984 .

[16]  S. Kshirsagar Electrical and Crystallographic Studies of the System Cu x Ni 1-x Mn 2 O 4 , 1969 .

[17]  V. Brabers,et al.  X-ray photoelectron spectroscopy study of the cation valencies in nickel manganite , 1983 .

[18]  M. L. M. Sarrión,et al.  Preparation and characterization of NIC thermistors based on Fe2+δMn1−x−δNixO4 , 1995 .

[19]  V. Brabers,et al.  Electrical Conductivity and Cation Valencies in Nickel Manganite , 1982, January 16.

[20]  A. Rousset,et al.  Structural and electrical properties of iron manganite spinels in relation with cationic distribution , 1995 .

[21]  A. J. Bosman,et al.  Hall Effect in CoO, NiO, and α-Fe 2 O 3 , 1967 .

[22]  V. S. Darshane,et al.  Effect of high temperatures on cation distribution: NiMn2O4-FeMn2O4 system , 1985 .

[23]  M. Hosseini,et al.  Effect of grain size and microstructures on resistivity of Mn–Co–Ni thermistor , 1998 .