Spin eigenstate-dependent Hartree—Fock molecular dynamics

Abstract For the first time we present a fully ab initio molecular dynamics scheme for the treatment of many-electron ground and excited electronic states at the Hartree—Fock level using traditional Gaussian basis sets. The method is designed to simulate dynamics with first principles forces and to find global potential energy minima. Our first test examples concern the dynamics of singlet and triplet Na 4 . We find this cluster to exhibit strongly state-dependent dynamical behaviour that would not be observed in classical simulations.

[1]  Jones,et al.  Total-energy differences: Sources of error in local-density approximations. , 1985, Physical review. B, Condensed matter.

[2]  L. Salem,et al.  Reliability of the Hellmann—Feynman Theorem for Approximate Charge Densities , 1962 .

[3]  William A. Goddard,et al.  Self‐Consistent Procedures for Generalized Valence Bond Wavefunctions. Applications H3, BH, H2O, C2H6, and O2 , 1972 .

[4]  C. Brooks Computer simulation of liquids , 1989 .

[5]  Michel Dupuis,et al.  Molecular symmetry. II. Gradient of electronic energy with respect to nuclear coordinates , 1978 .

[6]  Klein,et al.  Simulated annealing with floating Gaussians: Hellmann-Feynman forces without corrections. , 1988, Physical review. B, Condensed matter.

[7]  D. Salahub,et al.  New algorithm for the optimization of geometries in local density functional theory , 1990 .

[8]  U. Landman,et al.  Born-Oppenheimer dynamics using density-functional theory: Equilibrium and fragmentation of small sodium clusters , 1991 .

[9]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[10]  Peter Pulay,et al.  Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules , 1969 .

[11]  H. Schaefer Methods of Electronic Structure Theory , 1977 .

[12]  Andreoni,et al.  Structural, electronic, and vibrational properties of Si(111)-2 x 1 from ab initio molecular dynamics. , 1990, Physical review letters.

[13]  Paul Bendt,et al.  Simultaneous Relaxation of Nuclear Geometries and Electric Charge Densities in Electronic Structure Theories , 1983 .

[14]  Kawai,et al.  From van der Waals to metallic bonding: The growth of Be clusters. , 1990, Physical review letters.

[15]  J. Koutecký,et al.  Theoretical aspects of metal atom clusters , 1986 .

[16]  Michel Dupuis,et al.  Numerical integration using rys polynomials , 1976 .

[17]  Martin Head-Gordon,et al.  Optimization of wave function and geometry in the finite basis Hartree-Fock method , 1988 .

[18]  Jones,et al.  First-principles molecular-dynamics simulation of liquid and amorphous selenium. , 1991, Physical review. B, Condensed matter.

[19]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[20]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[21]  M. Chou,et al.  Physics of metal clusters , 1987 .

[22]  M. Payne,et al.  Car–Parrinello methods , 1990 .

[23]  Michele Parrinello,et al.  Structure of sulfur clusters using simulated annealing: S2 to S13 , 1988 .

[24]  M. Payne,et al.  A dynamical simulated annealing approach to the electronic structure of liquid metals , 1990 .

[25]  Martin J. Field Constrained optimization of ab initio and semiempirical Hartree-Fock wave functions using direct minimization or simulated annealing , 1991 .

[26]  M. Klein,et al.  Optimization of a distributed Gaussian basis set using simulated annealing: Application to the adiabatic dynamics of the solvated electron , 1988 .

[27]  S. J. Singer,et al.  Electronic energy shifts of a sodium atom in argon clusters by simulated annealing , 1990 .

[28]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[29]  W. D. Knight,et al.  The Physics of Metal Clusters , 1990 .

[30]  Accuracy of time-dependent properties in electronic-structure calculations using a fictitious Lagrangian. , 1989, Physical review. B, Condensed matter.

[31]  M. Field Simulated annealing, classical molecule dynamics and the Hartree—Fock method: the NDDO approximation , 1990 .

[32]  J. Ryckaert Special geometrical constraints in the molecular dynamics of chain molecules , 1985 .

[33]  D. Remler,et al.  Molecular dynamics without effective potentials via the Car-Parrinello approach , 1990 .

[34]  P. Giannozzi,et al.  Low-temperature structures of C4 and C10 from the Car—Parrinello method: singlet states , 1990 .

[35]  M. Klein,et al.  Erratum: Optimization of a distributed Gaussian basis set using simulated annealing: Application to the adiabatic dynamics of the solvated electron [J. Chem. Phys. 89, 1592 (1988)] , 1989 .

[36]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[37]  W. Andreoni,et al.  Structural and electronic properties of sodium microclusters (n=2–20) at low and high temperatures: New insights from ab initio molecular dynamics studies , 1991 .

[38]  H. Chacham,et al.  Fast Hartree-Fock calculations by simulated dynamics , 1990 .

[39]  S. J. Singer,et al.  Multiconfigurational electronic wave functions without a reference configuration: Analysis of a simulated annealing strategy , 1990 .