Mixed Roman Domination in Graphs
暂无分享,去创建一个
Teresa W. Haynes | H. Abdollahzadeh Ahangar | T. Haynes | H. A. Ahangar | J. C. Valenzuela-Tripodoro
[1] M. Chellali,et al. A NOTE ON THE INDEPENDENT ROMAN DOMINATION IN UNICYCLIC GRAPHS , 2012 .
[2] Yousef Alavi,et al. Total matchings and total coverings of graphs , 1977, J. Graph Theory.
[3] Nader Jafari Rad,et al. AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 52 (2012), Pages 11–18 Properties of independent Roman domination in graphs ∗ , 2022 .
[4] J. M. Sigarreta,et al. The differential and the roman domination number of a graph , 2014 .
[5] Pooya Hatami,et al. An approximation algorithm for the total covering problem , 2010, Discuss. Math. Graph Theory.
[6] Jianfang Wang,et al. On total covers of graphs , 1992, Discret. Math..
[7] Peter J. Slater,et al. Fundamentals of domination in graphs , 1998, Pure and applied mathematics.
[8] Gerard J. Chang,et al. On the mixed domination problem in graphs , 2013, Theor. Comput. Sci..
[9] I. Stewart. Defend the Roman Empire , 1999 .
[10] Stephen T. Hedetniemi,et al. Roman domination in graphs , 2004, Discret. Math..
[11] Charles S. Revelle,et al. Defendens Imperium Romanum: A Classical Problem in Military Strategy , 2000, Am. Math. Mon..
[12] Nader Jafari Rad,et al. Strong Equality Between the Roman Domination and Independent Roman Domination Numbers in Trees , 2013, Discuss. Math. Graph Theory.
[13] D. West. Introduction to Graph Theory , 1995 .
[14] Paul Erdös,et al. On total matching numbers and total covering numbers of complementary graphs , 1977, Discret. Math..
[15] Stephen T. Hedetniemi,et al. A Linear Algorithm for the Domination Number of a Tree , 1975, Inf. Process. Lett..
[16] Yancai Zhao,et al. The algorithmic complexity of mixed domination in graphs , 2011, Theor. Comput. Sci..