Q- space trajectory imaging with positivity constraints (QTI+)

Q-space trajectory imaging (QTI) enables the estimation of useful scalar measures indicative of the local tissue structure. This is accomplished by employing generalized gradient waveforms for diffusion sensitization alongside a diffusion tensor distribution (DTD) model. The first two moments of the underlying DTD are made available by acquisitions at low diffusion sensitivity (b-values). Here, we show that three independent conditions have to be fulfilled by the mean and covariance tensors associated with distributions of symmetric positive semidefinite tensors. We introduce an estimation framework utilizing semi-definite programming (SDP) to guarantee that these conditions are met. Applying the framework on simulated signal profiles for diffusion tensors distributed according to non-central Wishart distributions demonstrates the improved noise resilience of QTI+ over the commonly employed estimation methods. Our findings on a human brain data set also reveal pronounced improvements, especially so for acquisition protocols featuring few number of volumes. Our method's robustness to noise is expected to not only improve the accuracy of the estimates, but also enable a meaningful interpretation of contrast in the derived scalar maps. The technique's performance on shorter acquisitions could make it feasible in routine clinical practice.

[1]  Rachid Deriche,et al.  Statistics on the Manifold of Multivariate Normal Distributions: Theory and Application to Diffusion Tensor MRI Processing , 2006, Journal of Mathematical Imaging and Vision.

[2]  F. Szczepankiewicz,et al.  Tensor-valued diffusion MRI differentiates cortex and white matter in malformations of cortical development associated with epilepsy , 2020, Epilepsia.

[3]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[4]  Peter J Basser,et al.  Detecting compartmental non‐Gaussian diffusion with symmetrized double‐PFG MRI , 2015, NMR in biomedicine.

[5]  Eberhard Mayerhofer,et al.  On the existence of non-central Wishart distributions , 2010, J. Multivar. Anal..

[6]  Kasper Winther Andersen,et al.  Disentangling white-matter damage from physiological fibre orientation dispersion in multiple sclerosis , 2020, Brain communications.

[7]  Christina Kluge,et al.  Data Reduction And Error Analysis For The Physical Sciences , 2016 .

[8]  Rafael Neto Henriques,et al.  Correlation tensor magnetic resonance imaging , 2019, NeuroImage.

[9]  Computing the orientational-average of diffusion-weighted MRI signals: a comparison of different techniques , 2021, Scientific reports.

[10]  Ivan I Maximov,et al.  Towards an optimised processing pipeline for diffusion magnetic resonance imaging data: Effects of artefact corrections on diffusion metrics and their age associations in UK Biobank , 2019, Human brain mapping.

[11]  Stephen P. Boyd,et al.  Graph Implementations for Nonsmooth Convex Programs , 2008, Recent Advances in Learning and Control.

[12]  Marcel P. Zwiers,et al.  Patching cardiac and head motion artefacts in diffusion-weighted images , 2010, NeuroImage.

[13]  P. Basser,et al.  Analytical Expressions for the b Matrix in NMR Diffusion Imaging and Spectroscopy , 1994 .

[14]  Hans Knutsson,et al.  Multi-Fiber Reconstruction Using Probabilistic Mixture Models for Diffusion MRI Examinations of the Brain , 2017 .

[15]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[16]  Cheng Guan Koay,et al.  Nuclear magnetic resonance characterization of general compartment size distributions , 2011 .

[17]  Alan Connelly,et al.  Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution , 2007, NeuroImage.

[18]  L. Qi,et al.  Higher Order Positive Semidefinite Diffusion Tensor Imaging , 2010, SIAM J. Imaging Sci..

[19]  Sen,et al.  Debye-Porod law of diffraction for diffusion in porous media. , 1995, Physical review. B, Condensed matter.

[20]  P. V. van Zijl,et al.  Diffusion Weighting by the Trace of the Diffusion Tensor within a Single Scan , 1995, Magnetic resonance in medicine.

[21]  Jean B. Lasserre A Sum of Squares Approximation of Nonnegative Polynomials , 2006, SIAM J. Optim..

[22]  Peter J. Basser,et al.  A normal distribution for tensor-valued random variables: applications to diffusion tensor MRI , 2003, IEEE Transactions on Medical Imaging.

[23]  Alexander Leemans,et al.  REKINDLE: Robust extraction of kurtosis INDices with linear estimation , 2015, Magnetic resonance in medicine.

[24]  D. Cory,et al.  Multiple Scattering by NMR , 1999 .

[25]  M. Rudemo,et al.  The gamma distribution model for pulsed-field gradient NMR studies of molecular-weight distributions of polymers. , 2012, Journal of magnetic resonance.

[26]  M. Koch,et al.  A tensor model and measures of microscopic anisotropy for double-wave-vector diffusion-weighting experiments with long mixing times. , 2010, Journal of magnetic resonance.

[27]  S. Jespersen,et al.  Effects of nongaussian diffusion on "isotropic diffusion" measurements: An ex-vivo microimaging and simulation study. , 2017, Journal of magnetic resonance.

[28]  Baba C. Vemuri,et al.  Regularized positive-definite fourth order tensor field estimation from DW-MRI , 2009, NeuroImage.

[29]  H. Gudbjartsson,et al.  The rician distribution of noisy mri data , 1995, Magnetic resonance in medicine.

[30]  A. Song,et al.  Optimized isotropic diffusion weighting , 1995, Magnetic resonance in medicine.

[31]  Xavier Pennec,et al.  A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.

[32]  F. Szczepankiewicz,et al.  Microanisotropy imaging: quantification of microscopic diffusion anisotropy and orientational order parameter by diffusion MRI with magic-angle spinning of the q-vector , 2014, Front. Physics.

[33]  Carl-Fredrik Westin,et al.  NMR signal for particles diffusing under potentials: From path integrals and numerical methods to a model of diffusion anisotropy. , 2016, Physical review. E.

[34]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[35]  Carl-Fredrik Westin,et al.  The link between diffusion MRI and tumor heterogeneity: Mapping cell eccentricity and density by diffusional variance decomposition (DIVIDE) , 2016, NeuroImage.

[36]  Derek K. Jones,et al.  Computing the orientational-average of diffusion-weighted MRI signals: a comparison of different techniques , 2020, Scientific Reports.

[37]  Carl-Fredrik Westin,et al.  Quantification of microscopic diffusion anisotropy disentangles effects of orientation dispersion from microstructure: Applications in healthy volunteers and in brain tumors , 2015, NeuroImage.

[38]  S. Aoki,et al.  Brain White-Matter Degeneration Due to Aging and Parkinson Disease as Revealed by Double Diffusion Encoding , 2020, Frontiers in Neuroscience.

[39]  C. Westin,et al.  Characterizing magnetic resonance signal decay due to Gaussian diffusion: the path integral approach and a convenient computational method. , 2015, Concepts in magnetic resonance. Part A, Bridging education and research.

[40]  Carl-Fredrik Westin,et al.  Q-space trajectory imaging for multidimensional diffusion MRI of the human brain , 2016, NeuroImage.

[41]  J. Helpern,et al.  Diffusional kurtosis imaging: The quantification of non‐gaussian water diffusion by means of magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[42]  Carlo Pierpaoli,et al.  Informed RESTORE: A method for robust estimation of diffusion tensor from low redundancy datasets in the presence of physiological noise artifacts , 2012, Magnetic resonance in medicine.

[43]  Carlo Pierpaoli,et al.  Mean apparent propagator (MAP) MRI: A novel diffusion imaging method for mapping tissue microstructure , 2013, NeuroImage.

[44]  João P de Almeida Martins,et al.  Accuracy and precision of statistical descriptors obtained from multidimensional diffusion signal inversion algorithms , 2020, NMR in biomedicine.

[45]  C. Westin,et al.  Linear, planar and spherical tensor-valued diffusion MRI data by free waveform encoding in healthy brain, water, oil and liquid crystals , 2019, Data in Brief.

[46]  Baba C. Vemuri,et al.  Approximating Symmetric Positive Semidefinite Tensors of Even Order , 2012, SIAM J. Imaging Sci..

[47]  Baba C. Vemuri,et al.  A Mixture of Wisharts (MOW) Model for Multifiber Reconstruction , 2009 .

[48]  Tom Dela Haije,et al.  Enforcing necessary non-negativity constraints for common diffusion MRI models using sum of squares programming , 2019, NeuroImage.

[49]  Mauro Zucchelli,et al.  The confinement tensor model improves characterization of diffusion-weighted magnetic resonance data with varied timing parameters , 2016, 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI).

[50]  Carl-Fredrik Westin,et al.  Orientationally-averaged diffusion-attenuated magnetic resonance signal for locally-anisotropic diffusion , 2018, Scientific Reports.

[51]  Daniel C. Alexander,et al.  Measuring microscopic anisotropy with diffusion magnetic resonance: From material science to biomedical imaging , 2017 .

[52]  Chunlei Liu,et al.  Multimodal integration of diffusion MRI for better characterization of tissue biology , 2018, NMR in biomedicine.

[53]  Daniel Topgaard,et al.  Diffusion tensor distribution imaging , 2019, NMR in biomedicine.

[54]  B. Vemuri,et al.  AMixture of Wisharts ( MOW ) Model for Multi-fiber Reconstruction , 2015 .

[55]  Peter J Basser,et al.  Efficient experimental designs for isotropic generalized diffusion tensor MRI (IGDTI) , 2018, Magnetic resonance in medicine.

[56]  T. Mareci,et al.  Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging , 2003, Magnetic resonance in medicine.

[57]  Gérard Letac,et al.  Quadratic and inverse regressions for Wishart distributions , 1998 .

[58]  Carl-Fredrik Westin,et al.  Tensor‐valued diffusion MRI in under 3 minutes: an initial survey of microscopic anisotropy and tissue heterogeneity in intracranial tumors , 2019, Magnetic resonance in medicine.

[59]  Baba C. Vemuri,et al.  A novel tensor distribution model for the diffusion-weighted MR signal , 2007, NeuroImage.

[60]  P. Basser,et al.  A unifying theoretical and algorithmic framework for least squares methods of estimation in diffusion tensor imaging. , 2006, Journal of magnetic resonance.

[61]  Cheng Guan Koay,et al.  A signal transformational framework for breaking the noise floor and its applications in MRI. , 2009, Journal of magnetic resonance.

[62]  Christopher R. Johnson,et al.  Mathematics and Visualization , 2014, MICCAI 2014.

[63]  Ivan I Maximov,et al.  Robust tensor estimation in diffusion tensor imaging. , 2011, Journal of magnetic resonance.

[64]  Carl-Fredrik Westin,et al.  Influence of the Size and Curvedness of Neural Projections on the Orientationally Averaged Diffusion MR Signal , 2018, Front. Phys..

[65]  Alan Connelly,et al.  Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution , 2004, NeuroImage.

[66]  Wenyu Sun,et al.  Positive Semidefinite Generalized Diffusion Tensor Imaging via Quadratic Semidefinite Programming , 2013, SIAM J. Imaging Sci..

[67]  Rachid Deriche,et al.  Constrained diffusion kurtosis imaging using ternary quartics & MLE , 2014, Magnetic resonance in medicine.

[68]  M. Moseley,et al.  Magnetic Resonance in Medicine 51:924–937 (2004) Characterizing Non-Gaussian Diffusion by Using Generalized Diffusion Tensors , 2022 .

[69]  J. Sijbers,et al.  Constrained maximum likelihood estimation of the diffusion kurtosis tensor using a Rician noise model , 2011, Magnetic resonance in medicine.

[70]  Carl-Fredrik Westin,et al.  Effective Potential for Magnetic Resonance Measurements of Restricted Diffusion , 2017, Front. Phys..

[71]  Cheng Guan Koay,et al.  Least Squares Approaches to Diffusion Tensor Estimation , 2010 .

[72]  K. N. Magdoom,et al.  A new framework for MR diffusion tensor distribution , 2020, Scientific Reports.

[73]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .

[74]  Christian Berg,et al.  Positive definite functions on Abelian semigroups , 1976 .

[75]  de Swiet TM,et al.  Possible Systematic Errors in Single-Shot Measurements of the Trace of the Diffusion Tensor , 1996, Journal of magnetic resonance. Series B.

[76]  Evren Ozarslan,et al.  Compartment shape anisotropy (CSA) revealed by double pulsed field gradient MR. , 2009, Journal of magnetic resonance.