Structural basis for improved efficacy of therapeutic antibodies on defucosylation of their Fc glycans

Removal of the fucose residue from the N‐glycans of the Fc portion of immunoglobulin G (IgG) results in a dramatic enhancement of antibody‐dependent cellular cytotoxicity (ADCC) through improved affinity for Fcγ receptor IIIa (FcγRIIIa). Here, we present the 2.2‐Å structure of the complex formed between nonfucosylated IgG1‐Fc and a soluble form of FcγRIIIa (sFcγRIIIa) with two N‐glycosylation sites. The crystal structure shows that one of the two N‐glycans of sFcγRIIIa mediates the interaction with nonfucosylated Fc, thereby stabilizing the complex. However, fucosylation of the Fc N‐glycans inhibits this interaction, because of steric hindrance, and furthermore, negatively affects the dynamics of the receptor binding site. Our results offer a structural basis for improvement in ADCC of therapeutic antibodies by defucosylation.

[1]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[2]  Yoshiki Yamaguchi,et al.  Glycoform-dependent conformational alteration of the Fc region of human immunoglobulin G1 as revealed by NMR spectroscopy. , 2006, Biochimica et biophysica acta.

[3]  A. Pavlou,et al.  The therapeutic antibodies market to 2008. , 2005, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[4]  Behring,et al.  Ueber das Zustandekommen der Diphtherie-Immunität und der Tetanus-Immunität bei Thieren , 1890 .

[5]  B. Perussia,et al.  Alternative membrane forms of Fc gamma RIII(CD16) on human natural killer cells and neutrophils. Cell type-specific expression of two genes that differ in single nucleotide substitutions , 1989, The Journal of experimental medicine.

[6]  C. Sautès-Fridman,et al.  N-glycosylation profile of recombinant human soluble Fcgamma receptor III. , 2002, Glycobiology.

[7]  Yoshiki Yamaguchi,et al.  Structural comparison of fucosylated and nonfucosylated Fc fragments of human immunoglobulin G1. , 2007, Journal of molecular biology.

[8]  R. Jefferis,et al.  IgG‐Fc‐mediated effector functions: molecular definition of interaction sites for effector ligands and the role of glycosylation , 1998, Immunological reviews.

[9]  C. Sautès-Fridman,et al.  The Structure of a Human Type III Fcγ Receptor in Complex with Fc* , 2001, The Journal of Biological Chemistry.

[10]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[11]  Naoyuki Taniguchi,et al.  Decoding sugar functions by identifying target glycoproteins. , 2006, Current opinion in structural biology.

[12]  Koichi Kato,et al.  3.32 – Antibody Structures , 2007 .

[13]  L. Chasin,et al.  Effect of gamma rays at the dihydrofolate reductase locus: Deletions and inversions , 1986, Somatic cell and molecular genetics.

[14]  A. Vagin,et al.  MOLREP: an Automated Program for Molecular Replacement , 1997 .

[15]  Naoko Yamane-Ohnuki,et al.  Production of therapeutic antibodies with controlled fucosylation , 2009, mAbs.

[16]  Janice M Reichert,et al.  Monoclonal antibody successes in the clinic , 2005, Nature Biotechnology.

[17]  B. Lee,et al.  The interpretation of protein structures: estimation of static accessibility. , 1971, Journal of molecular biology.

[18]  J. Ravetch,et al.  Anti-Inflammatory Activity of Immunoglobulin G Resulting from Fc Sialylation , 2006, Science.

[19]  James E. Bailey,et al.  Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity , 1999, Nature Biotechnology.

[20]  K. Shitara,et al.  Engineered therapeutic antibodies with improved effector functions , 2009, Cancer science.

[21]  P. Umaña,et al.  The carbohydrate at FcgammaRIIIa Asn-162. An element required for high affinity binding to non-fucosylated IgG glycoforms. , 2006, The Journal of biological chemistry.

[22]  K. Shitara,et al.  Defucosylated Chimeric Anti-CC Chemokine Receptor 4 IgG1 with Enhanced Antibody-Dependent Cellular Cytotoxicity Shows Potent Therapeutic Activity to T-Cell Leukemia and Lymphoma , 2004, Cancer Research.

[23]  Robert Huber,et al.  The 3.2-Å crystal structure of the human IgG1 Fc fragment–FcγRIII complex , 2000, Nature.

[24]  M. Baudry,et al.  The role of glycosylation in ionotropic glutamate receptor ligand binding, function, and trafficking , 2000, Cellular and Molecular Life Sciences CMLS.

[25]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[26]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[27]  S. Iida,et al.  The N-linked oligosaccharide at FcγRIIIa Asn-45: an inhibitory element for high FcγRIIIa binding affinity to IgG glycoforms lacking core fucosylation , 2008, Glycobiology.

[28]  C. Sautès-Fridman,et al.  N-glycosylation profile of recombinant human soluble Fcγ receptor III , 2002 .

[29]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[30]  R. Dwek,et al.  Glycobiology , 2018, Biochimie.

[31]  Roy Jefferis,et al.  Glycosylation as a strategy to improve antibody-based therapeutics , 2009, Nature Reviews Drug Discovery.

[32]  K. Shitara,et al.  The Absence of Fucose but Not the Presence of Galactose or Bisecting N-Acetylglucosamine of Human IgG1 Complex-type Oligosaccharides Shows the Critical Role of Enhancing Antibody-dependent Cellular Cytotoxicity* , 2003, The Journal of Biological Chemistry.

[33]  D. Burton,et al.  Human antibody effector function. , 1992, Advances in immunology.

[34]  Kouhei Tsumoto,et al.  Fucose depletion from human IgG1 oligosaccharide enhances binding enthalpy and association rate between IgG1 and FcgammaRIIIa. , 2004, Journal of molecular biology.

[35]  L. Presta,et al.  Lack of Fucose on Human IgG1 N-Linked Oligosaccharide Improves Binding to Human FcγRIII and Antibody-dependent Cellular Toxicity* , 2002, The Journal of Biological Chemistry.

[36]  Nihon Hassei Seibutsu Gakkai,et al.  Genes to cells , 1996 .