An efficient method to construct self-dual cyclic codes of length ps over Fpm+uFpm

Abstract Let p be any odd prime number, m and s be arbitrary positive integers, and let F p m be the finite field of cardinality p m . Existing literature only determines the number of all (Euclidean) self-dual cyclic codes of length p s over finite chain ring R = F p m + u F p m ( u 2 = 0 ) , such as Dinh et al. (2018). Using some combinatorial identities, we obtain certain properties for Kronecker product of matrices over F p with a specific type. On that basis, we give an explicit representation and enumeration for all distinct self-dual cyclic codes of length p s over R . Moreover, we provide an efficient method to construct every self-dual cyclic code of length p s over R precisely.

[1]  H. Dinh Constacyclic Codes of Length $2^s$ Over Galois Extension Rings of ${\BBF}_{2}+u{\BBF}_2$ , 2009, IEEE Transactions on Information Theory.

[2]  Maria Carmen V. Amarra,et al.  On (1-u) -cyclic codes over Fpk + uFpk , 2008, Appl. Math. Lett..

[3]  Sergio R. López-Permouth,et al.  Cyclic and negacyclic codes over finite chain rings , 2004, IEEE Transactions on Information Theory.

[4]  Hai Q. Dinh,et al.  An explicit representation and enumeration for self-dual cyclic codes over F2m+uF2m of length 2s , 2019, Discret. Math..

[5]  Patanee Udomkavanich,et al.  Self-Dual Abelian Codes in Some Nonprincipal Ideal Group Algebras , 2016 .

[6]  A. Benjamin,et al.  Proofs that Really Count: The Art of Combinatorial Proof , 2003 .

[7]  Songsak Sriboonchitta,et al.  On constacyclic codes of length 4ps over Fpm+uFpm , 2017, Discret. Math..

[8]  Yun Fan,et al.  On self-dual constacyclic codes of length over , 2018, Discret. Math..

[9]  Songsak Sriboonchitta,et al.  Constacyclic codes of length \begin{document}$np^s$\end{document} over \begin{document}$\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}$\end{document} , 2018 .

[10]  Hongwei Liu,et al.  Constacyclic codes of length 2ps over Fpm+uFpm , 2010, Finite Fields Their Appl..

[11]  Parampalli Udaya,et al.  Cyclic Codes and Self-Dual Codes Over F2 + uF2 , 1999, IEEE Trans. Inf. Theory.

[12]  Hai Q. Dinh,et al.  Construction and enumeration for self-dual cyclic codes of even length over F2m + uF2m , 2020, Finite Fields Their Appl..

[13]  Taher Abualrub,et al.  Constacyclic codes over F2+uF2 , 2009, J. Frankl. Inst..

[14]  Songsak Sriboonchitta,et al.  Cyclic and negacyclic codes of length 4ps over 𝔽pm + u𝔽pm , 2018, Journal of Algebra and Its Applications.

[15]  Masaaki Harada,et al.  Type II Codes Over F2 + u F2 , 1999, IEEE Trans. Inf. Theory.

[16]  Koichi Betsumiya,et al.  Type II codes over F2m+uF2m , 2004, Discret. Math..

[17]  Masaaki Harada,et al.  Construction of optimal Type IV self-dual codes over F2+µF2 , 1999, IEEE Trans. Inf. Theory.

[18]  Hongwei Liu,et al.  Self-dual codes over commutative Frobenius rings , 2010, Finite Fields Their Appl..

[19]  Han Mao Kiah,et al.  A note on cyclic codes over GR(p2, m) of length pk , 2012, Des. Codes Cryptogr..

[20]  H. Dinh Constacyclic Codes of Length p^s Over Fpm + uFpm , 2010 .

[21]  Shixin Zhu,et al.  Negacyclic codes of length 2p2 over 𝔽pm + u𝔽pm , 2015, Finite Fields Their Appl..