Synergistic HNO3–H2SO4–NH3 upper tropospheric particle formation

[1]  L. Ahonen,et al.  The driving factors of new particle formation and growth in the polluted boundary layer , 2021, Atmospheric Chemistry and Physics.

[2]  M. Chin,et al.  Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere , 2021, Communications Earth & Environment.

[3]  Stefan K. Weber,et al.  Role of iodine oxoacids in atmospheric aerosol nucleation , 2021, Science.

[4]  J. Peischl,et al.  Supplementary material to "Large hemispheric difference in ultrafine aerosol concentrations in the lowermost stratosphere at mid and high latitudes" , 2021 .

[5]  I. Riipinen,et al.  Transport and chemistry of isoprene and its oxidation products in deep convective clouds , 2021, Tellus B: Chemical and Physical Meteorology.

[6]  Jian Wang,et al.  High concentration of ultrafine particles in the Amazon free troposphere produced by organic new particle formation , 2020, Proceedings of the National Academy of Sciences.

[7]  Stefan K. Weber,et al.  Molecular understanding of new-particle formation from α-pinene between −50 and +25 °C , 2020 .

[8]  Stefan K. Weber,et al.  Rapid growth of new atmospheric particles by nitric acid and ammonia condensation , 2020, Nature.

[9]  I. Riipinen,et al.  A Novel Framework to Study Trace Gas Transport in Deep Convective Clouds , 2020, Journal of Advances in Modeling Earth Systems.

[10]  T. Leisner,et al.  Solid Ammonium Nitrate Aerosols as Efficient Ice Nucleating Particles at Cirrus Temperatures , 2020, Journal of Geophysical Research: Atmospheres.

[11]  U. Pöschl,et al.  Particle production in the upper troposphere over the Amazon Basin , 2020 .

[12]  K. Lehtinen,et al.  Formation and growth of sub-3-nm aerosol particles in experimental chambers , 2020, Nature Protocols.

[13]  Stefan K. Weber,et al.  Enhanced growth rate of atmospheric particles from sulfuric acid , 2019, Atmospheric Chemistry and Physics.

[14]  E. Ray,et al.  A large source of cloud condensation nuclei from new particle formation in the tropics , 2019, Nature.

[15]  T. Leisner,et al.  Ammonium nitrate particles formed in upper troposphere from ground ammonia sources during Asian monsoons , 2019, Nature Geoscience.

[16]  A. Kürten New particle formation from sulfuric acid and ammonia: nucleation and growth model based on thermodynamics derived from CLOUD measurements for a wide range of conditions , 2019, Atmospheric Chemistry and Physics.

[17]  J. Lelieveld,et al.  Two new submodels for the Modular Earth Submodel System (MESSy): New Aerosol Nucleation (NAN) and small ions (IONS) version 1.0 , 2018, Geoscientific Model Development.

[18]  I. Riipinen,et al.  Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors , 2018, Science Advances.

[19]  R. Flagan,et al.  Scanning DMA Data Analysis I. Classification Transfer Function , 2018, Aerosol Science and Technology.

[20]  J. Seinfeld,et al.  Scanning DMA data analysis II. Integrated DMA-CPC instrument response and data inversion , 2018, Aerosol Science and Technology.

[21]  J. Lelieveld,et al.  Two new submodels for the Modular Earth Submodel System (MESSy): New Aerosol Nucleation (NAN) and small ions (IONS) version 1.0 , 2018 .

[22]  J. Lelieveld,et al.  The South Asian monsoon—pollution pump and purifier , 2018, Science.

[23]  Andreas Peckhaus,et al.  The Fifth International Workshop on Ice Nucleation phase 2 (FIN-02): laboratory intercomparison of ice nucleation measurements , 2018, Atmospheric Measurement Techniques.

[24]  Jun Wang,et al.  A molecular perspective for global modeling of upper atmospheric NH3 from freezing clouds , 2018, Proceedings of the National Academy of Sciences.

[25]  J. Kirkby,et al.  Temperature uniformity in the CERN CLOUD chamber , 2017 .

[26]  A. Hansel,et al.  PTR3: An Instrument for Studying the Lifecycle of Reactive Organic Carbon in the Atmosphere. , 2017, Analytical chemistry.

[27]  J. Seinfeld,et al.  Design, simulation, and characterization of a radial opposed migration ion and aerosol classifier (ROMIAC) , 2017 .

[28]  J. Warner,et al.  Increased atmospheric ammonia over the world's major agricultural areas detected from space , 2017, Geophysical research letters.

[29]  Harald Saathoff,et al.  A New Ice Nucleation Active Site Parameterization for Desert Dust and Soot , 2017 .

[30]  G. Mann,et al.  Global atmospheric particle formation from CERN CLOUD measurements , 2016, Science.

[31]  T. Clarmann,et al.  First detection of ammonia (NH 3 ) in the Asian summer monsoon upper troposphere , 2016 .

[32]  G. Mann,et al.  Size-resolved simulations of the aerosol inorganic composition with the new hybrid dissolution solver HyDiS-1.0: description, evaluation and first global modelling results , 2016 .

[33]  T. Petäjä,et al.  Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures , 2016 .

[34]  J. Curtius,et al.  Observation of new particle formation and measurement of sulfuric acid,ammonia, amines and highly oxidized organic molecules at a rural site incentral Germany , 2016 .

[35]  G. Pfister,et al.  The CU mobile Solar Occultation Flux instrument: structure functions and emission rates of NH 3 , NO 2 and C 2 H 6 , 2016 .

[36]  M. Chipperfield,et al.  The TOMCAT global chemical transport model v1.6: description of chemical mechanism and model evaluation , 2016 .

[37]  D. Worsnop,et al.  Reactions of Atmospheric Particulate Stabilized Criegee Intermediates Lead to High-Molecular-Weight Aerosol Components. , 2016, Environmental science & technology.

[38]  I. Riipinen,et al.  The role of low-volatility organic compounds in initial particle growth in the atmosphere , 2016, Nature.

[39]  J. Seinfeld,et al.  Ion-induced nucleation of pure biogenic particles , 2016, Nature.

[40]  D. Brus,et al.  Effect of ions on sulfuric acid‐water binary particle formation: 2. Experimental data and comparison with QC‐normalized classical nucleation theory , 2016 .

[41]  John B. Nowak,et al.  The global tropospheric ammonia distribution as seen in the 13-year AIRS measurement record , 2015 .

[42]  U. Baltensperger,et al.  Fast and precise measurement in the sub-20nm size range using a Scanning Mobility Particle Sizer , 2015 .

[43]  D. Jacob,et al.  Active and widespread halogen chemistry in the tropical and subtropical free troposphere , 2015, Proceedings of the National Academy of Sciences.

[44]  J. Seinfeld,et al.  Neutral molecular cluster formation of sulfuric acid–dimethylamine observed in real time under atmospheric conditions , 2014, Proceedings of the National Academy of Sciences.

[45]  Richard A. Cox,et al.  Compilation and evaluation of gas phase diffusion coefficients of reactive trace gases in the atmosphere: volume 1. Inorganic compounds , 2014 .

[46]  A. Ekman,et al.  Technical note: Introduction to MIMICA, a large‐eddy simulation solver for cloudy planetary boundary layers , 2014 .

[47]  J. Seinfeld,et al.  Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles , 2014, Science.

[48]  J. Curtius,et al.  submitter : Influence of aerosol lifetime on the interpretation of nucleation experiments with respect to the first nucleation theorem , 2013 .

[49]  M. Hallquist,et al.  A novel method for online analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO) , 2013 .

[50]  T. Petäjä,et al.  Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules , 2013, Proceedings of the National Academy of Sciences.

[51]  S. Haider,et al.  Characterisation of organic contaminants in the CLOUD chamber at CERN , 2013 .

[52]  T. Petäjä,et al.  Performance of diethylene glycol-based particle counters in the sub-3 nm size range , 2013 .

[53]  H. Schlager,et al.  Aerosol observations and growth rates downwind of the anvil of a deep tropical thunderstorm , 2012 .

[54]  T. Petäjä,et al.  Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF , 2011 .

[55]  J. M. Reeves,et al.  In situ observations of new particle formation in the tropical upper troposphere: the role of clouds and the nucleation mechanism , 2011 .

[56]  Jorge Lima,et al.  Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation , 2011, Nature.

[57]  Z. Jurányi,et al.  A 17 month climatology of the cloud condensation nuclei number concentration at the high alpine site Jungfraujoch , 2011 .

[58]  Patrick Jöckel,et al.  Development cycle 2 of the Modular Earth Submodel System (MESSy2) , 2010 .

[59]  J. Curtius,et al.  Performance of a corona ion source for measurement of sulfuric acid by chemical ionization mass spectrometry , 2010 .

[60]  Martyn P. Chipperfield,et al.  Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model , 2010 .

[61]  U. Rohner,et al.  A high-resolution mass spectrometer to measure atmospheric ion composition , 2010 .

[62]  D. Fahey,et al.  Stratospheric correlation between nitric acid and ozone , 2009 .

[63]  W. Winiwarter,et al.  How a century of ammonia synthesis changed the world , 2008 .

[64]  P. Schouten,et al.  Utilising polyphenylene oxide for high exposure solar UVA dosimetry , 2008 .

[65]  C. Clerbaux,et al.  First global distributions of nitric acid in the troposphere and the stratosphere derived from infrared satellite measurements , 2007 .

[66]  R. Martin,et al.  Space‐based constraints on the production of nitric oxide by lightning , 2007 .

[67]  Katrin Fuhrer,et al.  Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer. , 2006, Analytical chemistry.

[68]  Luis Kornblueh,et al.  Sensitivity of Simulated Climate to Horizontal and Vertical Resolution in the ECHAM5 Atmosphere Model , 2006 .

[69]  M. Chipperfield,et al.  New version of the TOMCAT/SLIMCAT off‐line chemical transport model: Intercomparison of stratospheric tracer experiments , 2006 .

[70]  S. Martin,et al.  Crystallization pathways of sulfate-nitrate-ammonium aerosol particles. , 2005, The journal of physical chemistry. A.

[71]  J. M. Reeves,et al.  Particle Formation by Ion Nucleation in the Upper Troposphere and Lower Stratosphere , 2003, Science.

[72]  A. Weinheimer,et al.  Deep convection as a source of new particles in the midlatitude upper troposphere , 2002 .

[73]  M. Molina,et al.  Heterogeneous Freezing of Aqueous Particles Induced by Crystallized (NH4)2SO4, Ice, and Letovicite , 2001 .

[74]  Scot T. Martin,et al.  Phase Transitions of Aqueous Atmospheric Particles. , 2000, Chemical reviews.

[75]  B. Luo,et al.  Water activity as the determinant for homogeneous ice nucleation in aqueous solutions , 2000, Nature.

[76]  Kenneth A. Smith,et al.  Development of an Aerosol Mass Spectrometer for Size and Composition Analysis of Submicron Particles , 2000 .

[77]  J. Abbatt,et al.  Infrared Observations of the Response of NaCl, MgCl2, NH4HSO4, and NH4NO3 Aerosols to Changes in Relative Humidity from 298 to 238 K , 2000 .

[78]  A. Clarke,et al.  Nucleation in the equatorial free troposphere: Favorable environments during PEM‐Tropics , 1999 .

[79]  James M. Hoell,et al.  Pacific Exploratory Mission in the tropical Pacific: PEM-Tropics A, August-September 1996 , 1999 .

[80]  Barry J. Huebert,et al.  International Global Atmospheric Chemistry (IGAC) Project's First Aerosol Characterization Experiment (ACE 1): Overview , 1998 .

[81]  D. Oxtoby,et al.  A general relation between the nucleation work and the size of the nucleus in multicomponent nucleation , 1994 .

[82]  Frank Arnold,et al.  Gaseous Sulfuric Acid and Sulfur Dioxide Measurements in the Arctic Troposphere and Lower Stratosphere: Implications for Hydroxyl Radical Abundances , 1992 .

[83]  D. Rogers Development of a continuous flow thermal gradient diffusion chamber for ice nucleation studies , 1988 .

[84]  P. Mcmurry,et al.  Gas and aerosol wall losses in Teflon film smog chambers. , 1985, Environmental science & technology.

[85]  P. Winkler,et al.  JournalofGeophysicalResearch : Atmospheres Causes and importance of new particle formation in the present-day and preindustrial atmospheres , 2017 .

[86]  T. Schiebel Ice Nucleation Activity of Soil Dust Aerosols , 2017 .

[87]  T. Tuch,et al.  Mobility particle size spectrometers : harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions , 2012 .

[88]  Atmospheric Chemistry and Physics Atmospheric ions and nucleation: a review of observations , 2011 .

[89]  J. Williams,et al.  Application of the variability-size relationship to atmospheric aerosol studies: estimating aerosol lifetimes and ages , 2002 .