Diagrammatic Design and Study of Ansätze for Quantum Machine Learning

Given the rising popularity of quantum machine learning (QML), it is important to develop techniques that effectively simplify commonly adopted families of parameterised quantum circuits (commonly known as ansatze). This thesis pioneers the use of diagrammatic techniques to reason with QML ansatze. We take commonly used QML ansatze and convert them to diagrammatic form and give a full description of how these gates commute, making the circuits much easier to analyse and simplify. Furthermore, we leverage a combinatorial description of the interaction between CNOTs and phase gadgets to analyse a periodicity phenomenon in layered ansatze and also to simplify a class of circuits commonly used in QML.

[1]  Edward Grant,et al.  An initialization strategy for addressing barren plateaus in parametrized quantum circuits , 2019, Quantum.

[2]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[3]  Aleks Kissinger,et al.  CNOT circuit extraction for topologically-constrained quantum memories , 2019, Quantum Inf. Comput..

[4]  Aleks Kissinger,et al.  Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning , 2017 .

[5]  Bob Coecke,et al.  Interacting Quantum Observables , 2008, ICALP.

[6]  Miriam Backens,et al.  The ZX-calculus is complete for stabilizer quantum mechanics , 2013, 1307.7025.

[7]  Nathan Killoran,et al.  Transfer learning in hybrid classical-quantum neural networks , 2019, Quantum.

[8]  Chao-Han Huck Yang,et al.  Variational Quantum Circuits for Deep Reinforcement Learning , 2019, IEEE Access.

[9]  C. Gogolin,et al.  Evaluating analytic gradients on quantum hardware , 2018, Physical Review A.

[10]  M. Stone On One-Parameter Unitary Groups in Hilbert Space , 1932 .

[11]  Ross Duncan,et al.  Architecture-aware synthesis of phase polynomials for NISQ devices , 2020, 2004.06052.

[12]  Simon Perdrix,et al.  Graph States and the Necessity of Euler Decomposition , 2009, CiE.

[13]  K. Birgitta Whaley,et al.  Towards quantum machine learning with tensor networks , 2018, Quantum Science and Technology.

[14]  Simon Perdrix,et al.  Completeness of the ZX-Calculus , 2019, Log. Methods Comput. Sci..

[15]  C. Heunen,et al.  Categories for Quantum Theory: An Introduction , 2020 .

[16]  Rupak Biswas,et al.  From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz , 2017, Algorithms.

[17]  B. Golden,et al.  Using simulated annealing to solve routing and location problems , 1986 .

[18]  Michele Mosca,et al.  On the controlled-NOT complexity of controlled-NOT–phase circuits , 2018, Quantum Science and Technology.

[19]  Bob Coecke,et al.  Quantum Algorithms for Compositional Natural Language Processing , 2016, SLPCS@QPL.

[20]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[21]  Ross Duncan,et al.  A Generic Compilation Strategy for the Unitary Coupled Cluster Ansatz , 2020, ArXiv.

[22]  Ross Duncan,et al.  t|ket⟩: a retargetable compiler for NISQ devices , 2020, Quantum Science and Technology.

[23]  Aleks Kissinger,et al.  Reducing T-count with the ZX-calculus , 2019, 1903.10477.

[24]  Pawel Wocjan,et al.  New construction of mutually unbiased bases in square dimensions , 2005, Quantum Inf. Comput..

[25]  Lane A. Hemaspaandra,et al.  Using simulated annealing to design good codes , 1987, IEEE Trans. Inf. Theory.

[26]  Donald E. Knuth,et al.  Fast Pattern Matching in Strings , 1977, SIAM J. Comput..

[27]  Ross Duncan,et al.  A graphical approach to measurement-based quantum computing , 2012, Quantum Physics and Linguistics.

[28]  J. Gambetta,et al.  Efficient Z gates for quantum computing , 2016, 1612.00858.

[29]  Peter D. Johnson,et al.  Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantum‐Classical Algorithms , 2019, Advanced Quantum Technologies.

[30]  J. Brenner The Hadamard Maximum Determinant Problem , 1972 .

[31]  Ross Duncan,et al.  Phase Gadget Synthesis for Shallow Circuits , 2019, QPL.

[32]  Bob Coecke,et al.  An alternative Gospel of structure: order, composition, processes , 2013, Quantum Physics and Linguistics.

[33]  Nathan Killoran,et al.  PennyLane: Automatic differentiation of hybrid quantum-classical computations , 2018, ArXiv.

[34]  Kevin J. Sung,et al.  Hartree-Fock on a superconducting qubit quantum computer , 2020, Science.

[35]  Aleks Kissinger,et al.  PyZX: Large Scale Automated Diagrammatic Reasoning , 2019, Electronic Proceedings in Theoretical Computer Science.

[36]  Ashley Montanaro,et al.  Achieving quantum supremacy with sparse and noisy commuting quantum computations , 2016, 1610.01808.

[37]  Maria Schuld,et al.  Stochastic gradient descent for hybrid quantum-classical optimization , 2019, Quantum.

[38]  Ryan Babbush,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[39]  Quanlong Wang,et al.  Completeness of the ZX-calculus for Pure Qubit Clifford+T Quantum Mechanics , 2018, 1801.07993.

[40]  Dacheng Tao,et al.  The Expressive Power of Parameterized Quantum Circuits , 2018, ArXiv.

[41]  Yann LeCun,et al.  The Loss Surfaces of Multilayer Networks , 2014, AISTATS.

[42]  Stefano Gogioso,et al.  Quantum Natural Language Processing on Near-Term Quantum Computers , 2020, ArXiv.