Slow oscillations open susceptible time windows for epileptic discharges

In patients with epilepsy, interictal epileptic discharges are a diagnostic hallmark of epilepsy and represent abnormal, so‐called “irritative” activity that disrupts normal cognitive functions. Despite their clinical relevance, their mechanisms of generation remain poorly understood. It is assumed that brain activity switches abruptly, unpredictably, and supposedly randomly to these epileptic transients. We aim to study the period preceding these epileptic discharges, to extract potential proepileptogenic mechanisms supporting their expression.

[1]  A. Giraud,et al.  The phase of cortical oscillations determines the perceptual fate of visual cues in naturalistic audiovisual speech , 2020, Science Advances.

[2]  C. Bernard Circadian/multidien Molecular Oscillations and Rhythmicity of Epilepsy (MORE) , 2020, Epilepsia.

[3]  Philippa J. Karoly,et al.  Seizure forecasting and cyclic control of seizures , 2020, Epilepsia.

[4]  P. G. Larsson,et al.  Criteria for defining interictal epileptiform discharges in EEG , 2020, Neurology.

[5]  A. Flinker,et al.  Interictal epileptiform discharges shape large-scale intercortical communication , 2019, Brain : a journal of neurology.

[6]  J. Gotman,et al.  Interictal coupling of HFOs and slow oscillations predicts the seizure‐onset pattern in mesiotemporal lobe epilepsy , 2019, Epilepsia.

[7]  Christoph M. Michel,et al.  Large-Scale 3–5 Hz Oscillation Constrains the Expression of Neocortical Fast Ripples in a Mouse Model of Mesial Temporal Lobe Epilepsy , 2019, eNeuro.

[8]  M. Avoli,et al.  Phase-amplitude coupling and epileptogenesis in an animal model of mesial temporal lobe epilepsy , 2018, Neurobiology of Disease.

[9]  Margitta Seeck,et al.  Electrophysiological Evidence for the Development of a Self-Sustained Large-Scale Epileptic Network in the Kainate Mouse Model of Temporal Lobe Epilepsy , 2018, The Journal of Neuroscience.

[10]  Emily A. Mirro,et al.  Multi-day rhythms modulate seizure risk in epilepsy , 2018, Nature Communications.

[11]  Robert T. Knight,et al.  Old Brains Come Uncoupled in Sleep: Slow Wave-Spindle Synchrony, Brain Atrophy, and Forgetting , 2018, Neuron.

[12]  David M. Groppe,et al.  The Hippocampus and Amygdala Are Integrators of Neocortical Influence: A CorticoCortical Evoked Potential Study , 2017, Brain Connect..

[13]  A. Schulze-Bonhage,et al.  Spectral bandwidth of interictal fast epileptic activity characterizes the seizure onset zone , 2017, NeuroImage: Clinical.

[14]  F. Cong,et al.  Temporal-spatial characteristics of phase-amplitude coupling in electrocorticogram for human temporal lobe epilepsy , 2017, Clinical Neurophysiology.

[15]  A. Kleinschmidt,et al.  Brain Networks and α-Oscillations: Structural and Functional Foundations of Cognitive Control , 2016, Trends in Cognitive Sciences.

[16]  G. Buzsáki,et al.  Interictal epileptiform discharges induce hippocampal-cortical coupling in temporal lobe epilepsy , 2016, Nature Medicine.

[17]  J. Gotman,et al.  Facilitation of epileptic activity during sleep is mediated by high amplitude slow waves , 2015, Brain : a journal of neurology.

[18]  Jan Cimbalnik,et al.  Gamma oscillations precede interictal epileptiform spikes in the seizure onset zone , 2015, Neurology.

[19]  S. Charpier,et al.  Slow modulations of high-frequency activity (40–140 Hz) discriminate preictal changes in human focal epilepsy , 2014, Scientific Reports.

[20]  Ayako Ochi,et al.  Dynamic modulation of epileptic high frequency oscillations by the phase of slower cortical rhythms , 2014, Experimental Neurology.

[21]  Guy M McKhann,et al.  Ictal high frequency oscillations distinguish two types of seizure territories in humans. , 2013, Brain : a journal of neurology.

[22]  Michel Le Van Quyen,et al.  Single-unit activities during epileptic discharges in the human hippocampal formation , 2013, Front. Comput. Neurosci..

[23]  C. Michel,et al.  Electric source imaging of interictal activity accurately localises the seizure onset zone , 2013, Journal of Neurology, Neurosurgery & Psychiatry.

[24]  G. Holmes,et al.  Hippocampal interictal epileptiform activity disrupts cognition in humans , 2013, Neurology.

[25]  I. Soltesz,et al.  On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy , 2013, Nature Communications.

[26]  Thomas J. Davidson,et al.  Closed-loop optogenetic control of thalamus as a new tool to interrupt seizures after cortical injury , 2012, Nature Neuroscience.

[27]  Mark P Richardson,et al.  Large scale brain models of epilepsy: dynamics meets connectomics , 2012, Journal of Neurology, Neurosurgery & Psychiatry.

[28]  M. Belluscio,et al.  Closed-Loop Control of Epilepsy by Transcranial Electrical Stimulation , 2012, Science.

[29]  G. Buzsáki,et al.  A 4 Hz Oscillation Adaptively Synchronizes Prefrontal, VTA, and Hippocampal Activities , 2011, Neuron.

[30]  Eishi Asano,et al.  Ictal high‐frequency oscillations at 80–200 Hz coupled with delta phase in epileptic spasms , 2011, Epilepsia.

[31]  I. Fried,et al.  Regional Slow Waves and Spindles in Human Sleep , 2011, Neuron.

[32]  G. Tononi,et al.  Local sleep in awake rats , 2011, Nature.

[33]  Christoph M. Michel,et al.  Spatiotemporal Analysis of Multichannel EEG: CARTOOL , 2011, Comput. Intell. Neurosci..

[34]  Fabrice Wendling,et al.  From mesial temporal lobe to temporoperisylvian seizures: A quantified study of temporal lobe seizure networks , 2010, Epilepsia.

[35]  Emery N Brown,et al.  Heterogeneous neuronal firing patterns during interictal epileptiform discharges in the human cortex. , 2010, Brain : a journal of neurology.

[36]  C. Bénar,et al.  Pitfalls of high-pass filtering for detecting epileptic oscillations: A technical note on “false” ripples , 2010, Clinical Neurophysiology.

[37]  Adriano B. L. Tort,et al.  Theta–gamma coupling increases during the learning of item–context associations , 2009, Proceedings of the National Academy of Sciences.

[38]  Fabrice Wendling,et al.  Local and remote epileptogenicity in focal cortical dysplasias and neurodevelopmental tumours. , 2009, Brain : a journal of neurology.

[39]  Philipp Berens,et al.  CircStat: AMATLABToolbox for Circular Statistics , 2009, Journal of Statistical Software.

[40]  E. Niebur,et al.  Neural Correlates of High-Gamma Oscillations (60–200 Hz) in Macaque Local Field Potentials and Their Potential Implications in Electrocorticography , 2008, The Journal of Neuroscience.

[41]  Giuseppe Biagini,et al.  Do Interictal Spikes Sustain Seizures and Epileptogenesis? , 2006, Epilepsy currents.

[42]  C. Helmstaedter,et al.  Cognitive Outcomes in Patients with Chronic Temporal Lobe Epilepsy , 2006, Epilepsia.

[43]  F. Dudek,et al.  Interictal Spikes and Epileptogenesis , 2006, Epilepsy currents.

[44]  M. Sperling,et al.  Interictal EEG and the Diagnosis of Epilepsy , 2006, Epilepsia.

[45]  O. Jensen,et al.  Posterior α activity is not phase-reset by visual stimuli , 2006 .

[46]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[47]  Brian Litt,et al.  Epileptic seizure prediction using hybrid feature selection over multiple intracranial EEG electrode contacts: a report of four patients , 2003, IEEE Transactions on Biomedical Engineering.

[48]  R. Miles,et al.  On the Origin of Interictal Activity in Human Temporal Lobe Epilepsy in Vitro , 2002, Science.

[49]  J. Schoffelen,et al.  FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data , 2018 .

[50]  S. Hughes,et al.  The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators , 2010, Nature Neuroscience.

[51]  L. Duez,et al.  Criteria for de fi ning interictal epileptiform discharges in EEG A clinical validation study , 2022 .