Accelerometer Triad Calibration for Pole Tilt Compensation Using Variance Based Sensitivity Analysis

In Engineering Geodesy, most coordinate frames are aligned with the local vertical. For many measurement tasks, it is therefore necessary to manually (or arithmetically) align sensors or equipment with the local vertical, which is a common source of errors and it is very time consuming. Alternatively, accelerometer triads as part of inertial measurement units (IMUs) are used in several applications for horizon leveling. In this contribution we analyze and develop a method to use accelerometer triads for pole tilt compensation with total stations. Several triad sensor models are investigated and applied in a calibration routine using an industrial robot arm. Furthermore a calibration routine to determine the orientation of the IMU mounted on the pole is proposed. Using variance based sensitivity analysis we investigate the influence of different model parameters on leveling and pole tilt compensation. Based on this inference the developed calibration routines are adjusted. The final evaluation experiment shows an RMS of 2.4 mm for the tilt compensated measured ground point with tilts up to 50 gon.

[1]  B Witte,et al.  Vermessungskunde und Grundlagen der Statistik für das Bauwesen , 2015 .

[2]  Zihui Wang,et al.  Optimized Multi-Position Calibration Method with Nonlinear Scale Factor for Inertial Measurement Units , 2019, Sensors.

[3]  Eun-Hwan Shin,et al.  A New Calibration Method for Strapdown Inertial Navigation Systems , 2022 .

[4]  John,et al.  Strapdown Inertial Navigation Technology - 2nd Edition , 2005 .

[5]  Fakhri Alam,et al.  A Comparative Analysis of Orientation Estimation Filters using MEMS based IMU , .

[6]  Chitoshi Miki,et al.  Determination Method of Bridge Rotation Angle Response Using MEMS IMU , 2016, Sensors.

[7]  Alexander Beetz,et al.  Separation of control quality and measurement accuracy for guiding control tasks of an indoor construction machine simulator , 2012, 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN).

[8]  K. Ramm Evaluation von Filter-Ansätzen für die Positionsschätzung von Fahrzeugen mit den Werkzeugen der Sensitivitätsanalyse , 2008 .

[9]  Jizhong Xiao,et al.  Keeping a Good Attitude: A Quaternion-Based Orientation Filter for IMUs and MARGs , 2015, Sensors.

[10]  Yuanxin Wu,et al.  Improved multi-position calibration for inertial measurement units , 2009 .

[11]  Naser El-Sheimy,et al.  A new multi-position calibration method for MEMS inertial navigation systems , 2007 .

[12]  M.F. Golnaraghi,et al.  A quaternion-based orientation estimation algorithm using an inertial measurement unit , 2004, PLANS 2004. Position Location and Navigation Symposium (IEEE Cat. No.04CH37556).

[13]  Ina Loth,et al.  An iteratively reweighted least-squares approach to adaptive robust adjustment of parameters in linear regression models with autoregressive and t-distributed deviations , 2018, Journal of Geodesy.

[14]  Wouter Olthuis,et al.  Procedure for in-use calibration of triaxial accelerometers , 1997 .

[15]  Xiaoguang Luo,et al.  High-Precision RTK Positioning with Calibration-Free Tilt Compensation , 2018 .

[16]  Emanuele Menegatti,et al.  A robust and easy to implement method for IMU calibration without external equipments , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[17]  C. Jekeli Inertial navigation systems with geodetic applications , 2000 .

[18]  Farid Golnaraghi,et al.  An Algorithm for the In-Field Calibration of a MEMS IMU , 2017, IEEE Sensors Journal.

[19]  Stefano Tarantola,et al.  Sensitivity Analysis in Practice , 2002 .

[20]  Giorgio Grisetti,et al.  Calibration and performance evaluation of low-cost IMUs , 2014 .

[21]  Agus Budiyono,et al.  Principles of GNSS, Inertial, and Multi-sensor Integrated Navigation Systems , 2012 .

[22]  Ningfang Song,et al.  Accelerometer calibration with nonlinear scale factor based on multi-position observation , 2013 .

[23]  Isaac Skog,et al.  Calibration of a MEMS inertial measurement unit , 2006 .

[24]  John Weston,et al.  Strapdown Inertial Navigation Technology , 1997 .

[25]  Volker Schwieger Sensitivity analysis as a general tool for model optimisation – examples for trajectory estimation , 2007 .

[26]  Andrew Y. C. Nee,et al.  Methods for in-field user calibration of an inertial measurement unit without external equipment , 2008 .

[27]  Yukinori Kobayashi,et al.  A method of low-cost IMU calibration and alignment , 2016, 2016 IEEE/SICE International Symposium on System Integration (SII).