MIMO ISI Channel Estimation Using Uncorrelated Golay Complementary Sets of Polyphase Sequences

In this paper, optimal training sequence design for multiple-input multiple-output (MIMO) intersymbol interference channels is addressed, and several novel low-complexity channel estimators are proposed, using uncorrelated Golay complementary sets of polyphase sequences. A polyphase sequence is a sequence of complex numbers, each of unit magnitude. The theoretical analysis and simulation show that, when the additive noise is Gaussian, the proposed best linear unbiased estimator achieves the minimum possible classical Cramer-Rao lower bound (CRLB) if the channel coefficients are regarded as unknown deterministics. On the other hand, the proposed linear minimum mean-square error estimator attains the minimum possible Bayesian CRLB when the underlying channel coefficients are Gaussian and independent of the additive Gaussian noise. The proposed channel estimators not only achieve the best estimation performance but can also be implemented with low complexity via DSP or application-specified integrated circuit/field programmable gate array. This has been possible due to the special structures intrinsic to uncorrelated Golay complementary sets of polyphase sequences, which make the proposed channel estimators ready to use in the practical MIMO systems.

[1]  Jingshown Wu,et al.  Optimal binary training sequence design for multiple-antenna systems over dispersive fading channels , 2002, IEEE Trans. Veh. Technol..

[2]  Robert W. Heath,et al.  Blind channel identification and equalization in OFDM-based multiantenna systems , 2002, IEEE Trans. Signal Process..

[3]  Mitsutoshi Hatori,et al.  Even-shift orthogonal sequences , 1969, IEEE Trans. Inf. Theory.

[4]  A. Gualtierotti H. L. Van Trees, Detection, Estimation, and Modulation Theory, , 1976 .

[5]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[6]  Leopold Bömer,et al.  Periodic complementary binary sequences , 1990, IEEE Trans. Inf. Theory.

[7]  Shuangquan Wang,et al.  Aperiodic complementary sets of sequences-based MIMO frequency selective channel estimation , 2005, IEEE Communications Letters.

[8]  Tan F. Wong,et al.  Training sequence optimization in MIMO systems with colored interference , 2004, IEEE Transactions on Communications.

[9]  J. Jedwab,et al.  Peak-to-mean power control in OFDM, Golay complementary sequences and Reed-Muller codes , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[10]  Naoki Suehiro,et al.  Class of binary sequences with zero correlation zone , 1999 .

[11]  C.-C. TSENG,et al.  Complementary sets of sequences , 1972, IEEE Trans. Inf. Theory.

[12]  Thomas Kailath,et al.  On the capacity of frequency- selective channels in training-based transmission schemes , 2004, IEEE Transactions on Signal Processing.

[13]  Naoki Suehiro,et al.  A new class of zero-correlation zone sequences , 2004, IEEE Transactions on Information Theory.

[14]  Anna Scaglione,et al.  On the effect of receiver estimation error upon channel mutual information , 2006, IEEE Transactions on Signal Processing.

[15]  Shuangquan Wang,et al.  Optimal Training Sequences For Efficient MIMO Frequency-Selective Fading Channel Estimation , 2006, 2006 IEEE Sarnoff Symposium.

[16]  Kai Niu,et al.  A novel matched filter for primary synchronization channel in W-CDMA , 2002, Vehicular Technology Conference. IEEE 55th Vehicular Technology Conference. VTC Spring 2002 (Cat. No.02CH37367).

[17]  Hsiao-Hwa Chen,et al.  A multicarrier CDMA architecture based on orthogonal complementary codes for new generations of wideband wireless communications , 2001, IEEE Commun. Mag..

[18]  M. Antweiler,et al.  Merit factor of Chu and Frank sequences , 1990 .

[19]  Robert L. Frank,et al.  Phase shift pulse codes with good periodic correlation properties (Corresp.) , 1962, IRE Trans. Inf. Theory.

[20]  Dragomiru Z. Dokovic Note on Periodic Complementary Sets of Binary Sequences , 1998, Des. Codes Cryptogr..

[21]  Shuangquan Wang,et al.  Low-Complexity Optimal Estimation of MIMO ISI Channels With Binary Training Sequences , 2006, IEEE Signal Processing Letters.

[22]  Babak Hassibi,et al.  How much training is needed in multiple-antenna wireless links? , 2003, IEEE Trans. Inf. Theory.

[23]  Hlaing Minn,et al.  Optimal training signals for MIMO OFDM channel estimation , 2006, IEEE Trans. Wirel. Commun..

[24]  Liuqing Yang,et al.  Optimal training for MIMO frequency-selective fading channels , 2005, IEEE Transactions on Wireless Communications.

[25]  Guangguo Bi,et al.  Channel estimation using complementary sequence pairs for UWB/OFDM systems , 2004 .

[26]  A. W. M. van den Enden,et al.  Discrete Time Signal Processing , 1989 .

[27]  Alan V. Oppenheim,et al.  Discrete-time signal processing (2nd ed.) , 1999 .

[28]  Shuangquan Wang,et al.  MIMO frequency selective channel estimation using aperiodic complementary sets of sequences , 2005, GLOBECOM '05. IEEE Global Telecommunications Conference, 2005..

[29]  Willi-Hans Steeb,et al.  Kronecker product of matrices and applications , 1991 .

[30]  Pingzhi Fan,et al.  SEQUENCE DESIGN FOR COMMUNICATIONS APPLICATIONS , 1996 .

[31]  Siavash M. Alamouti,et al.  A simple transmit diversity technique for wireless communications , 1998, IEEE J. Sel. Areas Commun..

[32]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[33]  Lizhong Zheng,et al.  Communication on the Grassmann manifold: A geometric approach to the noncoherent multiple-antenna channel , 2002, IEEE Trans. Inf. Theory.

[34]  R. Gill,et al.  Applications of the van Trees inequality : a Bayesian Cramr-Rao bound , 1995 .

[35]  Umberto Spagnolini,et al.  Lower bound on training-based channel estimation error for frequency-selective block-fading Rayleigh MIMO channels , 2004, IEEE Transactions on Signal Processing.

[36]  Marc Moonen,et al.  Optimal training design for MIMO OFDM systems in mobile wireless channels , 2003, IEEE Trans. Signal Process..

[37]  M. Zakai,et al.  Some Classes of Global Cramer-Rao Bounds , 1987 .

[38]  Christina Fragouli,et al.  Training-based channel estimation for multiple-antenna broadband transmissions , 2003, IEEE Trans. Wirel. Commun..

[39]  Marcel J. E. Golay,et al.  Complementary series , 1961, IRE Trans. Inf. Theory.

[40]  Robert L. Frank,et al.  Polyphase codes with good nonperiodic correlation properties , 1963, IEEE Trans. Inf. Theory.

[41]  Costas N. Georghiades,et al.  Complementary sequences for ISI channel estimation , 2001, IEEE Trans. Inf. Theory.

[42]  Brian M. Sadler,et al.  Pilot-assisted wireless transmissions: general model, design criteria, and signal processing , 2004, IEEE Signal Processing Magazine.

[43]  Brian M. Sadler,et al.  Pilot Assisted Wireless Transmissions † , 2004 .

[44]  S. Budisin Efficient pulse compressor for Golay complementary sequences , 1991 .

[45]  Erik G. Larsson,et al.  Space-Time Block Coding for Wireless Communications , 2003 .

[46]  Georgios B. Giannakis,et al.  Capacity maximizing MMSE-optimal pilots for wireless OFDM over frequency-selective block Rayleigh-fading channels , 2004, IEEE Transactions on Information Theory.

[47]  R. C. Heimiller,et al.  Phase shift pulse codes with good periodic correlation properties , 1961, IRE Trans. Inf. Theory.

[48]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[49]  Y. Jay Guo,et al.  Channel estimation using aperiodic binary sequences , 1998, IEEE Communications Letters.

[50]  M. J. Gans,et al.  On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas , 1998, Wirel. Pers. Commun..

[51]  Hlaing Minn,et al.  Optimal training signals for MIMO OFDM channel estimation , 2004, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04..

[52]  David C. Chu,et al.  Polyphase codes with good periodic correlation properties (Corresp.) , 1972, IEEE Trans. Inf. Theory.

[53]  M. Golay Multi-slit spectrometry. , 1949, Journal of the Optical Society of America.

[54]  Pingzhi Fan,et al.  On optimal training sequence design for multiple-antenna systems over dispersive fading channels and its extensions , 2004, IEEE Transactions on Vehicular Technology.

[55]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[56]  S. Grob,et al.  Enhanced channel impulse response identification for the ITU HF measurement campaign , 1998 .

[57]  Hans D. Schotten,et al.  Binary and quadriphase sequences with optimal autocorrelation properties: a survey , 2003, IEEE Trans. Inf. Theory.

[58]  R. Sivaswamy,et al.  Multiphase Complementary Codes , 1978, IEEE Trans. Inf. Theory.

[59]  B. Popović Efficient Golay correlator , 1999 .