A novel proton transfer mechanism in the SLC11 family of divalent metal ion transporters

In humans, the H+-coupled Fe2+ transporter DMT1 (SLC11A2) is essential for proper maintenance of iron homeostasis. While X-ray diffraction has recently unveiled the structure of the bacterial homologue ScaDMT as a LeuT-fold transporter, the exact mechanism of H+-cotransport has remained elusive. Here, we used a combination of molecular dynamics simulations, in silico pKa calculations and site-directed mutagenesis, followed by rigorous functional analysis, to discover two previously uncharacterized functionally relevant residues in hDMT1 that contribute to H+-coupling. E193 plays a central role in proton binding, thereby affecting transport properties and electrogenicity, while N472 likely coordinates the metal ion, securing an optimally “closed” state of the protein. Our molecular dynamics simulations provide insight into how H+-translocation through E193 is allosterically linked to intracellular gating, establishing a novel transport mechanism distinct from that of other H+-coupled transporters.

[1]  Heather A H Haemig,et al.  Importance of Conserved Acidic Residues in MntH, the Nramp homolog of Escherichia coli , 2004, The Journal of Membrane Biology.

[2]  D. Higgins,et al.  T-Coffee: A novel method for fast and accurate multiple sequence alignment. , 2000, Journal of molecular biology.

[3]  Jan H. Jensen,et al.  PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions. , 2011, Journal of chemical theory and computation.

[4]  C. Beaumont,et al.  Natural history of recessive inheritance of DMT1 mutations. , 2008, The Journal of pediatrics.

[5]  Alexander D. MacKerell,et al.  CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field , 2015, Journal of chemical theory and computation.

[6]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[7]  W. Kühlbrandt,et al.  Structural basis of Na+-independent and cooperative substrate/product antiport in CaiT , 2010, Nature.

[8]  Cédric Notredame,et al.  Upcoming challenges for multiple sequence alignment methods in the high-throughput era , 2009, Bioinform..

[9]  Jens Meiler,et al.  Simultaneous prediction of protein secondary structure and transmembrane spans , 2013, Proteins.

[10]  Ivet Bahar,et al.  Energy landscape of LeuT from molecular simulations. , 2015, The Journal of chemical physics.

[11]  N. Andrews,et al.  Nramp2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[12]  D. Loo,et al.  Relaxation kinetics of the Na+/glucose cotransporter. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[13]  M. Hediger,et al.  Synthesis, Maturation, and Trafficking of Human Na+-Dicarboxylate Cotransporter NaDC1 Requires the Chaperone Activity of Cyclophilin B* , 2011, The Journal of Biological Chemistry.

[14]  Harel Weinstein,et al.  Supporting Material , 2010 .

[15]  Oliver Beckstein,et al.  MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations , 2016, SciPy.

[16]  E. Gouaux,et al.  Structure and Mechanism of a Na+-Independent Amino Acid Transporter , 2009, Science.

[17]  Sunhwan Jo,et al.  CHARMM‐GUI Membrane Builder toward realistic biological membrane simulations , 2014, J. Comput. Chem..

[18]  Andrei L. Lomize,et al.  OPM: Orientations of Proteins in Membranes database , 2006, Bioinform..

[19]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[20]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[21]  Nicholas P. Vyleta,et al.  Evidence for a third sodium-binding site in glutamate transporters suggests an ion/substrate coupling model , 2010, Proceedings of the National Academy of Sciences.

[22]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[23]  D T Jones,et al.  Protein secondary structure prediction based on position-specific scoring matrices. , 1999, Journal of molecular biology.

[24]  P. Gros,et al.  Cellular and subcellular localization of the Nramp2 iron transporter in the intestinal brush border and regulation by dietary iron. , 1999, Blood.

[25]  M. L. Ujwal,et al.  Divalent metal-ion transporter DMT1 mediates both H+ -coupled Fe2+ transport and uncoupled fluxes , 2005, Pflügers Archiv.

[26]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using MODELLER , 2016, Current protocols in bioinformatics.

[27]  C. Perez,et al.  Mechanistic aspects of sodium-binding sites in LeuT-like fold symporters , 2013, Biological chemistry.

[28]  Dániel Kozma,et al.  PDBTM: Protein Data Bank of transmembrane proteins after 8 years , 2012, Nucleic Acids Res..

[29]  Taehoon Kim,et al.  CHARMM‐GUI: A web‐based graphical user interface for CHARMM , 2008, J. Comput. Chem..

[30]  Jan H. Jensen,et al.  Improved Treatment of Ligands and Coupling Effects in Empirical Calculation and Rationalization of pKa Values. , 2011, Journal of chemical theory and computation.

[31]  Harel Weinstein,et al.  The mechanism of a neurotransmitter:sodium symporter--inward release of Na+ and substrate is triggered by substrate in a second binding site. , 2008, Molecular cell.

[32]  D. Loo,et al.  Presteady-State Currents of the Rabbit Na+/Glucose Cotransporter (SGLT1) , 1997, The Journal of Membrane Biology.

[33]  K. Schulten,et al.  Crystal Structure and Conformational Change Mechanism of a Bacterial Nramp-Family Divalent Metal Transporter. , 2016, Structure.

[34]  T. Ganz Systemic iron homeostasis. , 2013, Physiological reviews.

[35]  C. Beaumont,et al.  Not all DMT1 mutations lead to iron overload. , 2009, Blood cells, molecules & diseases.

[36]  D. Loo,et al.  Electrogenic properties of the cloned Na+/glucose cotransporter: I. Voltage-clamp studies , 2004, The Journal of Membrane Biology.

[37]  M. Hediger,et al.  Development and Validation of a Fast and Homogeneous Cell-Based Fluorescence Screening Assay for Divalent Metal Transporter 1 (DMT1/SLC11A2) Using the FLIPR Tetra , 2014, Journal of biomolecular screening.

[38]  Harini Krishnamurthy,et al.  X-ray structures of LeuT in substrate-free outward-open and apo inward-open states , 2012, Nature.

[39]  J. Brodsky,et al.  Membrane Protein Properties Revealed through Data-Rich Electrostatics Calculations. , 2015, Structure.

[40]  R. Dutzler,et al.  Structural and mechanistic basis of proton-coupled metal ion transport in the SLC11/NRAMP family , 2017, Nature Communications.

[41]  A. Sali,et al.  Comparative protein structure modeling of genes and genomes. , 2000, Annual review of biophysics and biomolecular structure.

[42]  P. Argos,et al.  Knowledge‐based protein secondary structure assignment , 1995, Proteins.

[43]  Daniel W. A. Buchan,et al.  Scalable web services for the PSIPRED Protein Analysis Workbench , 2013, Nucleic Acids Res..

[44]  A. Sali,et al.  Modeling of loops in protein structures , 2000, Protein science : a publication of the Protein Society.

[45]  Christian Cole,et al.  JPred4: a protein secondary structure prediction server , 2015, Nucleic Acids Res..

[46]  Stephan Nussberger,et al.  Cloning and characterization of a mammalian proton-coupled metal-ion transporter , 1997, Nature.

[47]  W. Kühlbrandt,et al.  Arginine oscillation explains Na+ independence in the substrate/product antiporter CaiT , 2013, Proceedings of the National Academy of Sciences.

[48]  N. Andrews,et al.  Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene , 1997, Nature genetics.

[49]  K. Schulten,et al.  Conserved methionine dictates substrate preference in Nramp-family divalent metal transporters , 2016, Proceedings of the National Academy of Sciences.

[50]  A. Simonin,et al.  Nedd4-1 and β-Arrestin-1 Are Key Regulators of Na+/H+ Exchanger 1 Ubiquitylation, Endocytosis, and Function* , 2010, The Journal of Biological Chemistry.

[51]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using MODELLER , 2007, Current protocols in protein science.

[52]  A. Shawki,et al.  Substrate Profile and Metal-ion Selectivity of Human Divalent Metal-ion Transporter-1* , 2012, The Journal of Biological Chemistry.

[53]  Oliver Beckstein,et al.  MDAnalysis: A toolkit for the analysis of molecular dynamics simulations , 2011, J. Comput. Chem..

[54]  T. Blundell,et al.  Comparative protein modelling by satisfaction of spatial restraints. , 1993, Journal of molecular biology.

[55]  R. Dutzler,et al.  Crystal structure of a SLC11 (NRAMP) transporter reveals the basis for transition-metal ion transport , 2014, Nature Structural &Molecular Biology.

[56]  Sergei Yu Noskov,et al.  The Molecular Mechanism of Ion-Dependent Gating in Secondary Transporters , 2013, PLoS Comput. Biol..

[57]  Alexander D. MacKerell,et al.  Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. , 2012, Journal of chemical theory and computation.

[58]  E. Tajkhorshid,et al.  Material Title : Identification of the Third Na + Site and the Sequence of Extracellular Binding Events in the Glutamate Transporter , 2010 .

[59]  M. Hediger,et al.  Functional properties of multiple isoforms of human divalent metal-ion transporter 1 (DMT1). , 2007, The Biochemical journal.

[60]  Alexander D. MacKerell,et al.  CHARMM-GUI PDB manipulator for advanced modeling and simulations of proteins containing nonstandard residues. , 2014, Advances in protein chemistry and structural biology.

[61]  Nathan A. Baker,et al.  APBSmem: A Graphical Interface for Electrostatic Calculations at the Membrane , 2010, PloS one.

[62]  Adiel Cohen,et al.  Yeast SMF1 Mediates H+-coupled Iron Uptake with Concomitant Uncoupled Cation Currents* , 1999, The Journal of Biological Chemistry.