Adaptive pinning control: A review of the fully decentralized strategy and its extensions

In this work, we review recent developments related to the problem of guiding a complex network of agents toward a synchronized state. Specifically, we focus on adaptive pinning control strategies, expounding those developed by the authors in the context of the existing literature, in which only a small fraction of the network nodes is directly controlled. The methodologies described herein are adaptive in the sense that the control and coupling gains are updated on the basis of the local mismatch with the desired trajectory and between coupled nodes, respectively. A selection of adaptive strategies recently proposed in the literature is reviewed, and the main stability results are expounded. As a numerical validation, the selected approaches are applied to control an ensemble of coupled mobile agents moving in a formation.

[1]  Naomi Ehrich Leonard,et al.  Dynamics of Decision Making in Animal Group Motion , 2009, J. Nonlinear Sci..

[2]  Mario di Bernardo,et al.  Novel decentralized adaptive strategies for the synchronization of complex networks , 2009, Autom..

[3]  F. Garofalo,et al.  Controllability of complex networks via pinning. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Xiang Li,et al.  Pinning a complex dynamical network to its equilibrium , 2004, IEEE Trans. Circuits Syst. I Regul. Pap..

[5]  Xiwei Chen,et al.  Network Synchronization with an Adaptive Coupling Strength , 2006 .

[6]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[7]  Govindan Rangarajan,et al.  Stability of synchronization in a multi-cellular system , 2010 .

[8]  Maurizio Porfiri,et al.  Criteria for stochastic pinning control of networks of chaotic maps. , 2014, Chaos.

[9]  Elbert E. N. Macau,et al.  Hybrid pinning Control for Complex Networks , 2012, Int. J. Bifurc. Chaos.

[10]  F. Garofalo,et al.  Synchronization of complex networks through local adaptive coupling. , 2008, Chaos.

[11]  Luiz Felipe R Turci,et al.  Adaptive node-to-node pinning synchronization control of complex networks. , 2012, Chaos.

[12]  Youxian Sun,et al.  Adaptive synchronization of weighted complex dynamical networks through pinning , 2008 .

[13]  Tianping Chen,et al.  Pinning Complex Networks by a Single Controller , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[14]  M. Hasler,et al.  Synchronization in asymmetrically coupled networks with node balance. , 2006, Chaos.

[15]  Zhuzhi Yuan,et al.  Stabilizing weighted complex networks , 2007 .

[16]  S. Boccaletti,et al.  Synchronization of moving chaotic agents. , 2008, Physical review letters.

[17]  L. Chua,et al.  Synchronization in an array of linearly coupled dynamical systems , 1995 .

[18]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[19]  Wenwu Yu,et al.  On pinning synchronization of complex dynamical networks , 2009, Autom..

[20]  Maurizio Porfiri,et al.  Criteria for global pinning-controllability of complex networks , 2008, Autom..

[21]  Chai Wah Wu,et al.  Synchronization and convergence of linear dynamics in random directed networks , 2006, IEEE Transactions on Automatic Control.

[22]  L. Chua,et al.  The double hook (nonlinear chaotic circuits) , 1988 .

[23]  Zhidong Teng,et al.  Exponential synchronization of Cohen-Grossberg neural networks via periodically intermittent control , 2011, Neurocomputing.

[24]  Aloka Sinha,et al.  Chaos-based secure communication system using logistic map , 2010 .

[25]  Maurizio Porfiri,et al.  Topological analysis of group fragmentation in multiagent systems. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Petter Ögren,et al.  Flocking with Obstacle Avoidance: A New Distributed Coordination Algorithm Based on Voronoi Partitions , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[27]  Mario di Bernardo,et al.  On QUAD, Lipschitz, and Contracting Vector Fields for Consensus and Synchronization of Networks , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[28]  Linying Xiang,et al.  Pinning control of complex dynamical networks with general topology , 2007 .

[29]  Jonathan H. Manton,et al.  Coordination and Consensus of Networked Agents with Noisy Measurements: Stochastic Algorithms and Asymptotic Behavior , 2009, SIAM J. Control. Optim..

[30]  Jean-Jacques E. Slotine,et al.  A theoretical study of different leader roles in networks , 2006, IEEE Transactions on Automatic Control.

[31]  Richard M. Murray,et al.  Consensus problems in networks of agents with switching topology and time-delays , 2004, IEEE Transactions on Automatic Control.

[32]  Henk Nijmeijer,et al.  Synchronization and Graph Topology , 2005, Int. J. Bifurc. Chaos.

[33]  Mario di Bernardo,et al.  Fully adaptive pinning control of complex networks , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[34]  Erik M. Bollt,et al.  Sufficient Conditions for Fast Switching Synchronization in Time-Varying Network Topologies , 2006, SIAM J. Appl. Dyn. Syst..

[35]  M. Porfiri,et al.  Node-to-node pinning control of complex networks. , 2009, Chaos.

[36]  M. Hasler,et al.  Connection Graph Stability Method for Synchronized Coupled Chaotic Systems , 2004 .

[37]  A. Barrat,et al.  Consensus formation on adaptive networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Alexey A. Koronovskii,et al.  Generalized synchronization of chaos for secure communication: Remarkable stability to noise , 2010, 1302.4067.

[39]  R. Sepulchre,et al.  Oscillator Models and Collective Motion , 2007, IEEE Control Systems.

[40]  M. di Bernardo,et al.  Pinning control of complex networks via edge snapping. , 2011, Chaos.

[41]  Guanrong Chen,et al.  Pinning control of scale-free dynamical networks , 2002 .

[42]  H Henk Nijmeijer,et al.  Regulation and controlled synchronization for complex dynamical systems , 2000 .

[43]  Takashi Yoneyama,et al.  Isochronal synchronization of time delay and delay-coupled chaotic systems , 2011, Journal of Physics A: Mathematical and Theoretical.

[44]  Junan Lu,et al.  Pinning adaptive synchronization of a general complex dynamical network , 2008, Autom..

[45]  Henry Leung,et al.  A chaos secure communication scheme based on multiplication modulation , 2010 .

[46]  James Lam,et al.  Stabilization of Networked Control Systems via Dynamic Output-Feedback Controllers , 2010, SIAM J. Control. Optim..

[47]  Giovanni Polverino,et al.  Collective behaviour across animal species , 2014, Scientific Reports.

[48]  Sonia Martínez,et al.  Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions , 2006, IEEE Transactions on Automatic Control.

[49]  I. Couzin,et al.  Effective leadership and decision-making in animal groups on the move , 2005, Nature.

[50]  Brian D. O. Anderson,et al.  Reaching a Consensus in a Dynamically Changing Environment: Convergence Rates, Measurement Delays, and Asynchronous Events , 2008, SIAM J. Control. Optim..

[51]  Linying Xiang,et al.  On pinning synchronization of general coupled networks , 2011 .

[52]  Henk Nijmeijer,et al.  A dynamical control view on synchronization , 2001 .

[53]  David J. Hill,et al.  Impulsive Consensus for Complex Dynamical Networks with Nonidentical Nodes and Coupling Time-Delays , 2011, SIAM J. Control. Optim..

[54]  Lei Wang,et al.  Pinning synchronization of a mobile agent network , 2009 .

[55]  Mario di Bernardo,et al.  Analysis and stability of consensus in networked control systems , 2010, Appl. Math. Comput..

[56]  Luiz Felipe R Turci,et al.  Performance of pinning-controlled synchronization. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  Reza Olfati-Saber,et al.  Consensus and Cooperation in Networked Multi-Agent Systems , 2007, Proceedings of the IEEE.

[58]  Reza Olfati-Saber,et al.  Flocking for multi-agent dynamic systems: algorithms and theory , 2006, IEEE Transactions on Automatic Control.

[59]  Magnus Egerstedt,et al.  Controllability of Multi-Agent Systems from a Graph-Theoretic Perspective , 2009, SIAM J. Control. Optim..

[60]  João Marcos Travassos Romano,et al.  Chaos-based communication systems in non-ideal channels , 2012 .