Direct solution of partial difference equations by tensor product methods
暂无分享,去创建一个
[1] Philip M. Morse,et al. Methods of Mathematical Physics , 1947, The Mathematical Gazette.
[2] E. Egerváry. Über eine Methode zur numerischen Lösung der Poissonschen Differenzengleichung für beliebige Gebiete , 1960 .
[3] Richard Courant,et al. Methods of Mathematical Physics, 1 , 1955 .
[4] John R. Rice,et al. Tensor Product Analysis of Alternating Direction Implicit Methods , 1965 .
[5] R. Varga,et al. Implicit alternating direction methods , 1959 .
[6] H. Rutishauser,et al. TheLR transformation method for symmetric matrices , 1963 .
[7] J. Gillis,et al. Matrix Iterative Analysis , 1961 .
[8] Chebyshev Approximation by $a\Pi \frac{{x - r_i }}{{x + s_i }}$ and Application to ADI Iteration , 1963 .
[9] John R. Rice,et al. Tensor product analysis of partial difference equations , 1964 .
[10] An implicit, numerical method for solving the two-dimensional heat equation , 1960 .
[11] K. D. Tocher,et al. Basic theorems in matrix theory , 1960 .
[12] P. Halmos. Finite-Dimensional Vector Spaces , 1960 .
[13] Roger W. Hockney,et al. A Fast Direct Solution of Poisson's Equation Using Fourier Analysis , 1965, JACM.
[14] J. H. Wilkinson. Calculation of the eigenvalues of a symmetric tridiagonal matrix by the method of bisection , 1962 .