Free-decomposability in Varieties of Pseudocomplemented Residuated Lattices

In this paper we prove that the free pseudocomplemented residuated lattices are decomposable if and only if they are Stone, i.e., if and only if they satisfy the identity ¬x ∨ ¬¬x = 1. Some applications are given.

[1]  Antoni Torrens Torrell,et al.  Free Algebras in Varieties of Glivenko MTL-algebras Satisfying the Equation 2(x2) = (2x)2 , 2006, Stud Logica.

[2]  Antoni Torrens Torrell,et al.  Free Stone algebras , 2000, Discret. Math..

[3]  Roberto Cignoli,et al.  Free algebras in varieties of Stonean residuated lattices , 2007, Soft Comput..

[4]  Manuela Busaniche,et al.  Free algebras in varieties of BL-algebras generated by a BLn-chain , 2006, Journal of the Australian Mathematical Society.

[5]  W. Blok,et al.  On the structure of varieties with equationally definable principal congruences IV , 1994 .

[6]  Ulrich Höhle,et al.  Non-classical logics and their applications to fuzzy subsets : a handbook of the mathematical foundations of fuzzy set theory , 1995 .

[7]  R. P. Dilworth,et al.  Residuated Lattices. , 1938, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Roberto Cignoli,et al.  Free algebras in varieties of BL-algebras with a Boolean retract. , 2002 .

[9]  Antoni Torrens Torrell,et al.  Bounded BCK‐algebras and their generated variety , 2007, Math. Log. Q..

[10]  H. Ono,et al.  Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Volume 151 , 2007 .

[11]  A. Monteiro Sur les algèbres de Heyting symétriques , 1980 .

[12]  Antoni Torrens Torrell,et al.  Glivenko like theorems in natural expansions of BCK-logic , 2004, Math. Log. Q..

[13]  Manuela Busaniche,et al.  Free algebras in varieties of BL-algebras generated by a chain. , 2003 .