MRI with phaseless encoding

Fourier encoded MRI signal is complex and, therefore, sensitive to uncontrolled phase variations caused, e.g., by object motion. An alternative encoding is proposed which leads to phaseless (positive real) signals and allows the phase fluctuations to be removed by simple magnitude calculation before the Fourier transform.

[1]  S. Maier Slab scan diffusion imaging , 2001, Magnetic resonance in medicine.

[2]  Alan Edelman,et al.  Non‐Fourier‐encoded parallel MRI using multiple receiver coils , 2004, Magnetic resonance in medicine.

[3]  Eric Van Reeth,et al.  Super-resolution in magnetic resonance imaging: A review , 2012 .

[4]  Jan Sijbers,et al.  Super‐resolution for multislice diffusion tensor imaging , 2013, Magnetic resonance in medicine.

[5]  Julien Cohen-Adad,et al.  Real diffusion-weighted MRI enabling true signal averaging and increased diffusion contrast , 2015, NeuroImage.

[6]  A Macovski,et al.  Multifrequency interpolation for fast off‐resonance correction , 1997, Magnetic resonance in medicine.

[7]  M. Gustafsson Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy , 2000, Journal of microscopy.

[8]  W. Edelstein,et al.  Spin warp NMR imaging and applications to human whole-body imaging. , 1980, Physics in medicine and biology.

[9]  J. Goodman Introduction to Fourier optics , 1969 .

[10]  Sylvia K. Plevritis,et al.  Spectral extrapolation of spatially bounded images [MRI application] , 1995, IEEE Trans. Medical Imaging.

[11]  Klaas P Pruessmann,et al.  Encoding and reconstruction in parallel MRI , 2006, NMR in biomedicine.

[12]  S. Maier,et al.  Line scan diffusion imaging , 1996, Magnetic resonance in medicine.

[13]  Klaus Scheffler Superresolution in MRI? , 2002, Magnetic resonance in medicine.

[14]  Yogesh Rathi,et al.  High‐resolution in vivo diffusion imaging of the human brain with generalized slice dithered enhanced resolution: Simultaneous multislice (gSlider‐SMS) , 2018, Magnetic resonance in medicine.

[15]  G. Glover,et al.  Respiration‐induced B0 fluctuations and their spatial distribution in the human brain at 7 Tesla , 2002, Magnetic resonance in medicine.

[16]  Feng Huang,et al.  POCS‐enhanced inherent correction of motion‐induced phase errors (POCS‐ICE) for high‐resolution multishot diffusion MRI , 2016, Magnetic resonance in medicine.

[17]  Trong-Kha Truong,et al.  Phase‐updated regularized SENSE for navigator‐free multishot diffusion imaging , 2017, Magnetic resonance in medicine.

[18]  Allen W. Song,et al.  A robust multi-shot scan strategy for high-resolution diffusion weighted MRI enabled by multiplexed sensitivity-encoding (MUSE) , 2013, NeuroImage.

[19]  F. Hennel The effective phase of soft RF pulses , 2014 .

[20]  Ferenc A. Jolesz,et al.  MR image encoding by spatially selective rf excitation: An analysis using linear response models , 1999, Int. J. Imaging Syst. Technol..

[21]  R. Turner,et al.  Echo-planar imaging: magnetic resonance imaging in a fraction of a second. , 1991, Science.

[22]  L. Axel,et al.  MR imaging of motion with spatial modulation of magnetization. , 1989, Radiology.

[23]  D. Norris Implications of bulk motion for diffusion‐weighted imaging experiments: Effects, mechanisms, and solutions , 2001, Journal of magnetic resonance imaging : JMRI.

[24]  D. Noll,et al.  Homodyne detection in magnetic resonance imaging. , 1991, IEEE transactions on medical imaging.

[25]  Stefan Ropele,et al.  Super‐resolution MRI using microscopic spatial modulation of magnetization , 2010, Magnetic resonance in medicine.

[26]  A. Stemmer,et al.  True optical resolution beyond the Rayleigh limit achieved by standing wave illumination. , 2000, Proceedings of the National Academy of Sciences of the United States of America.