Basic dynamics from a pulse-coupled network of autonomous integrate-and-fire chaotic circuits

Studies basic dynamics of a pulse-coupled network (PCN). The unit element of the PCN is an autonomous integrate-and-fire chaotic circuit having two states. For a basic master-slave PCN, we give basic classification of chaos synchronous phenomena and their breakdown patterns. The existence region of each phenomenon is elucidated in a parameter subspace. We then construct a large scale ring-type PCN, and elucidate that the PCN exhibits interesting grouping phenomena of chaos synchronization patterns. Some typical phenomena can be verified in the laboratory.

[1]  Leon O. Chua,et al.  Cellular neural networks: applications , 1988 .

[2]  Louis M. Pecora,et al.  Fundamentals of synchronization in chaotic systems, concepts, and applications. , 1997, Chaos.

[3]  Hiroyuki Torikai,et al.  Synchronization of chaos and its itinerancy from a network by occasional linear connection , 1998 .

[4]  T. Saito,et al.  Chaos in electrical and electronic circuits and systems , 1990 .

[5]  Eugene M. Izhikevich,et al.  Weakly pulse-coupled oscillators, FM interactions, synchronization, and oscillatory associative memory , 1999, IEEE Trans. Neural Networks.

[6]  Toshimichi Saito,et al.  Various impulsive synchronous patterns from mutually coupled ISC chaotic oscillators , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).

[7]  T. Saito,et al.  Dependent switched capacitor chaos generator and its synchronization , 1997 .

[8]  Toshimichi Saito,et al.  Integrate-and-fire model with periodic inputs , 1999, IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339).

[9]  T. Saito,et al.  Chaos from a hysteresis and switched circuit , 1995, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[10]  J. Rinzel,et al.  INTEGRATE-AND-FIRE MODELS OF NERVE MEMBRANE RESPONSE TO OSCILLATORY INPUT. , 1981 .

[11]  Ruben Budelli,et al.  Limit cycles of a bineuronal network model , 1992 .

[12]  K. Mitsubori,et al.  Mutually pulse-coupled chaotic circuits by using dependent switched capacitors , 2000 .

[13]  Kazuyuki Aihara,et al.  What Functional Connectivity Can Do: Software Driven Neural Networks , 1998, International Conference on Neural Information Processing.

[14]  A.L. Fradkov,et al.  Self-synchronization and controlled synchronization , 1997, 1997 1st International Conference, Control of Oscillations and Chaos Proceedings (Cat. No.97TH8329).

[15]  Parlitz,et al.  Driving and synchronizing by chaotic impulses. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  H. Nakato Synchronization from Pulse-Coupled Integrate-and-Fire Chaotic Oscillators , 2000 .

[17]  Lin-Bao Yang,et al.  Cellular neural networks: theory , 1988 .

[18]  Toshimichi Saito,et al.  Autonomous integrate-and-fire model with vibration , 1999, IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339).

[19]  S. Strogatz,et al.  Synchronization of pulse-coupled biological oscillators , 1990 .

[20]  J J Hopfield,et al.  Rapid local synchronization of action potentials: toward computation with coupled integrate-and-fire neurons. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[21]  L. Glass,et al.  A simple model for phase locking of biological oscillators , 1979, Journal of mathematical biology.

[22]  Hiroyuki Torikai,et al.  Return Map Quantization from an Integrate-and-Fire Model with Two Periodic Inputs , 1999 .

[23]  Toshimichi Saito,et al.  Switched dynamical systems with double periodic inputs: an analysis tool and its application to the buck-boost converter , 2000 .

[24]  Hidehiro NAKANO,et al.  Synchronization from Pulse-Coupled Integrate-and-Fire Chaotic Oscillators , 2000 .