Radial Response of Individual Bubbles Subjected to Shock Wave Lithotripsy Pulses In Vitro

Direct measurements of individual bubble oscillations in lithotripsy fields have been performed using light-scattering techniques. Studies were performed with bubble clouds in gassy water as well as single levitated bubbles in degassed water. There is direct evidence that the bubble survives the inertial collapse, rebounding several times before breaking up. Bubble dynamics calculations agree well with the observations, provided that vapor trapping (a reduction in condensation during bubble collapse) is included. Furthermore, the afterbounces are dominated by vapor diffusion, not gas diffusion. Vapor trapping is important in limiting the collapse strength of bubbles, and in sonochemical activity.

[1]  S. Gracewski,et al.  Internal stress wave measurements in solids subjected to lithotripter pulses. , 1993, The Journal of the Acoustical Society of America.

[2]  A. Prosperetti,et al.  The Effect of Viscosity on the Spherical Stability of Oscillating Gas Bubbles , 1999 .

[3]  T. Matula Inertial cavitation and single–bubble sonoluminescence , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[4]  H. Whitfield,et al.  The current status of lithotripsy. , 1991, British journal of urology.

[5]  W. Brendel,et al.  A mechanism of gallstone destruction by extracorporeal shock waves , 1988, Naturwissenschaften.

[6]  S. Asano,et al.  Light scattering properties of spheroidal particles. , 1979, Applied optics.

[7]  J. Staudenraus,et al.  Fibre-optic probe hydrophone for ultrasonic and shock-wave measurements in water , 1993 .

[8]  T. Watanabe,et al.  Translational and radial motions of a bubble in an acoustic standing wave field , 1993 .

[9]  R C Preston,et al.  Pressure waveforms generated by a Dornier extra-corporeal shock-wave lithotripter. , 1987, Ultrasound in medicine & biology.

[10]  Detlef Lohse,et al.  Phase diagrams for sonoluminescing bubbles , 1996 .

[11]  J. Saunders,et al.  Detection of acoustic emission from cavitation in tissue during clinical extracorporeal lithotripsy. , 1996, Ultrasound in medicine & biology.

[12]  Barber,et al.  Sonoluminescing bubbles and mass diffusion. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  D. Lohse,et al.  Phase diagrams for sonoluminescing bubbles: A comparison between experiment and theory , 2003 .

[14]  L A Crum,et al.  Mie scattering used to determine spherical bubble oscillations. , 1990, Applied optics.

[15]  A. Szeri,et al.  Water vapour, sonoluminescence and sonochemistry , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[16]  W. J. Lorenz,et al.  A new method of quantitative cavitation assessment in the field of a lithotripter. , 1996, Ultrasound in medicine & biology.

[17]  Barber,et al.  Light scattering measurements of the repetitive supersonic implosion of a sonoluminescing bubble. , 1992, Physical review letters.

[18]  Philip L. Marston,et al.  Mie scattering near the critical angle of bubbles in water , 1981 .

[19]  M. Hartmann,et al.  Light scattering by small particles. Von H. C. VANDE HULST. New York: Dover Publications, Inc. 1981. Paperback, 470 S., 103 Abb. und 46 Tab., US $ 7.50 , 1984 .

[20]  Cuiling Gong,et al.  Ultrasound Induced Cavitation and Sonochemical Yields , 1998 .

[21]  B. Sturtevant,et al.  Fracture mechanics model of stone comminution in ESWL and implications for tissue damage. , 2000, Physics in medicine and biology.

[22]  H. V. Hulst Light Scattering by Small Particles , 1957 .

[23]  M. S. Plesset,et al.  On the Stability of Fluid Flows with Spherical Symmetry , 1954 .

[24]  Gary M. Hansen,et al.  Mie scattering as a technique for the sizing of air bubbles , 1985 .

[25]  N. Fineberg,et al.  Design and characterization of a research electrohydraulic lithotripter patterned after the Dornier HM 3 , 2000 .

[26]  A. Szeri,et al.  Mixture segregation within sonoluminescence bubbles , 1999, Journal of Fluid Mechanics.

[27]  Ronald A. Roy,et al.  Bjerknes force and bubble levitation under single-bubble sonoluminescence conditions , 1997 .

[28]  L A Crum,et al.  Use of a dual-pulse lithotripter to generate a localized and intensified cavitation field. , 2001, The Journal of the Acoustical Society of America.

[29]  W Eisenmenger,et al.  The mechanisms of stone fragmentation in ESWL. , 2001, Ultrasound in medicine & biology.

[30]  Philip L. Marston,et al.  Critical angle scattering by a bubble: physical-optics approximation and observations , 1979 .

[31]  Holt Rg,et al.  Mie scattering used to determine spherical bubble oscillations , 1990 .

[32]  Lawrence A. Crum,et al.  Acoustic cavitation generated by an extracorporeal shockwave lithotripter , 1986 .

[33]  Werner Lauterborn,et al.  Acoustic transient generation by laser‐produced cavitation bubbles near solid boundaries , 1988 .

[34]  D. Lohse,et al.  Does water vapor prevent upscaling sonoluminescence? , 2000, Physical review letters.

[35]  A. Szeri,et al.  Inertially driven inhomogeneities in violently collapsing bubbles: the validity of the Rayleigh–Plesset equation , 2002, Journal of Fluid Mechanics.

[36]  S. Asano,et al.  Light scattering by a spheroidal particle. , 1975, Applied optics.

[37]  George E. Davis,et al.  Scattering of Light by an Air Bubble in Water , 1955 .

[38]  T G Leighton,et al.  Acoustic emission and sonoluminescence due to cavitation at the beam focus of an electrohydraulic shock wave lithotripter. , 1992, Ultrasound in medicine & biology.

[39]  S. Putterman,et al.  Effect of Noble Gas Doping in Single-Bubble Sonoluminescence , 1994, Science.

[40]  Tetsuya Kodama,et al.  Cavitation bubble behavior and bubble–shock wave interaction near a gelatin surface as a study of in vivo bubble dynamics , 2000 .

[41]  J. Debus,et al.  Influence of shock wave pressure amplitude and pulse repetition frequency on the lifespan, size and number of transient cavities in the field of an electromagnetic lithotripter. , 1998, Physics in medicine and biology.

[42]  Glenn M. Preminger,et al.  New developments in the management of urolithiasis , 1996 .

[43]  C. Church,et al.  A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter. , 1988, The Journal of the Acoustical Society of America.

[44]  P L Marston,et al.  Critical-angle scattering of laser light from bubbles in water: measurements, models, and application to sizing of bubbles. , 1984, Applied optics.

[45]  L A Crum,et al.  Cavitation microjets as a contributory mechanism for renal calculi disintegration in ESWL. , 1988, The Journal of urology.

[46]  B. Sturtevant,et al.  In vitro study of the mechanical effects of shock-wave lithotripsy. , 1997, Ultrasound in medicine & biology.

[47]  Andrea Prosperetti,et al.  Nonlinear bubble dynamics , 1988 .

[48]  Andrea Prosperetti,et al.  Bubble dynamics in a compressible liquid. Part 1. First-order theory , 1986, Journal of Fluid Mechanics.

[49]  Michael R. Bailey,et al.  Design and characterization of a research electrohydraulic lithotripter patterned after the Dornier HM3 , 2000 .

[50]  R. Cleveland,et al.  Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. II. Cavitation fields. , 1998, The Journal of the Acoustical Society of America.

[51]  Detlef Lohse,et al.  Analysis of Rayleigh–Plesset dynamics for sonoluminescing bubbles , 1998, Journal of Fluid Mechanics.

[52]  A reduced model of cavitation physics for use in sonochemistry , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[53]  Anthony I. Eller,et al.  Force on a Bubble in a Standing Acoustic Wave , 1968 .

[54]  Marios M. Fyrillas,et al.  Dissolution or growth of soluble spherical oscillating bubbles , 1994, Journal of Fluid Mechanics.

[55]  E. Schmiedt,et al.  EXTRACORPOREALLY INDUCED DESTRUCTION OF KIDNEY STONES BY SHOCK WAVES , 1980, The Lancet.

[56]  Linda K. Weavers,et al.  CHEMICAL BUBBLE DYNAMICS AND QUANTITATIVE SONOCHEMISTRY , 1998 .

[57]  P. Zhong,et al.  Dynamics of bubble oscillation in constrained media and mechanisms of vessel rupture in SWL. , 2001, Ultrasound in medicine & biology.

[58]  L A Crum,et al.  A dual passive cavitation detector for localized detection of lithotripsy-induced cavitation in vitro. , 2000, The Journal of the Acoustical Society of America.