Time-Stepping and Krylov Methods for Large-Scale Instability Problems

With the ever increasing computational power available and the development of high-performances computing, investigating the properties of realistic very large-scale nonlinear dynamical systems has become reachable. It must be noted however that the memory capabilities of computers increase at a slower rate than their computational capabilities. Consequently, the traditional matrix-forming approaches wherein the Jacobian matrix of the system considered is explicitly assembled become rapidly intractable. Over the past two decades, so-called matrix-free approaches have emerged as an efficient alternative. The aim of this chapter is thus to provide an overview of well-grounded matrix-free methods for fixed points computations and linear stability analyses of very large-scale nonlinear dynamical systems.

[1]  Vladimír Janovský,et al.  Continuation of Invariant Subspaces via the Recursive Projection Method , 2003 .

[2]  O. Marxen,et al.  Steady solutions of the Navier-Stokes equations by selective frequency damping , 2006 .

[3]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[4]  F. Richez,et al.  Selective frequency damping method for steady RANS solutions of turbulent separated flows around an airfoil at stall , 2016 .

[5]  S. Sherwin,et al.  An adaptive selective frequency damping method , 2014, 1412.4372.

[6]  Dan S. Henningson,et al.  Bifurcation and stability analysis of a jet in cross-flow: onset of global instability at a low velocity ratio , 2012, Journal of Fluid Mechanics.

[7]  Jack Dongarra,et al.  LAPACK Users' Guide, 3rd ed. , 1999 .

[8]  Michele Alessandro Bucci,et al.  Subcritical and supercritical dynamics of incompressible flow over miniaturized roughness elements , 2017 .

[9]  Global stability and sensitivity analysis of boundary-layer flows past a hemispherical roughness element , 2015 .

[10]  Clarence W. Rowley,et al.  H2 optimal actuator and sensor placement in the linearised complex Ginzburg–Landau system , 2010, Journal of Fluid Mechanics.

[11]  T. Taylor,et al.  Computational methods for fluid flow , 1982 .

[12]  Thomas B. Gatski,et al.  A Temporal Approximate Deconvolution Model for Large-Eddy Simulation , 2006 .

[13]  Boundary layer stability calculations , 1987 .

[14]  Michael B. Giles,et al.  Stabilization of linear flow solver for turbomachinery aeroelasticity using Recursive Projection method , 2004 .

[15]  R. Jordinson Spectrum of Eigenvalues of the Orr Sommerfeld Equation for Blasius Flow , 1971 .

[16]  Laurent Hascoët,et al.  The Tapenade automatic differentiation tool: Principles, model, and specification , 2013, TOMS.

[17]  U. Rist,et al.  Roughness-induced transition by quasi-resonance of a varicose global mode , 2017, Journal of Fluid Mechanics.

[18]  Filippo Giannetti,et al.  Efficient stabilization and acceleration of numerical simulation of fluid flows by residual recombination , 2017, J. Comput. Phys..

[19]  S. Orszag Accurate solution of the Orr–Sommerfeld stability equation , 1971, Journal of Fluid Mechanics.

[20]  James C. Sutherland,et al.  Graph-Based Software Design for Managing Complexity and Enabling Concurrency in Multiphysics PDE Software , 2011, TOMS.

[21]  Denis Sipp,et al.  Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows , 2007, Journal of Fluid Mechanics.

[22]  M. Landahl A note on an algebraic instability of inviscid parallel shear flows , 1980, Journal of Fluid Mechanics.

[23]  R. Jordinson,et al.  The flat plate boundary layer. Part 1. Numerical integration of the Orr–-Sommerfeld equation , 1970, Journal of Fluid Mechanics.

[24]  G. Cunha,et al.  Optimization of the selective frequency damping parameters using model reduction , 2015 .

[25]  P. Manneville Transition to turbulence in wall-bounded flows: Where do we stand? , 2016, 1604.00840.

[26]  L. Pastur,et al.  Visualizations of the flow inside an open cavity at medium range Reynolds numbers , 2007 .

[27]  Danny C. Sorensen,et al.  Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..

[28]  L. Mack,et al.  A numerical study of the temporal eigenvalue spectrum of the Blasius boundary layer , 1976, Journal of Fluid Mechanics.

[29]  M. Malik Numerical methods for hypersonic boundary layer stability , 1990 .

[30]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[31]  D. Crighton,et al.  Instability of flows in spatially developing media , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[32]  J. Robinet,et al.  Investigation of the roughness-induced transition: global stability analyses and direct numerical simulations , 2014, Journal of Fluid Mechanics.

[33]  Petros Koumoutsakos,et al.  Large Scale Simulation of Cloud Cavitation Collapse , 2017, ICCS.

[34]  Thierry M. Faure,et al.  Experimental investigation of global structures in an incompressible cavity flow using time-resolved PIV , 2011 .

[35]  K. Stewartson,et al.  A non-linear instability theory for a wave system in plane Poiseuille flow , 1971, Journal of Fluid Mechanics.

[36]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .

[37]  P. Drazin,et al.  The stability of Poiseuille flow in a pipe , 1969, Journal of Fluid Mechanics.

[38]  Rich Kerswell,et al.  Nonlinear Nonmodal Stability Theory , 2018 .

[39]  J. Ortega,et al.  Computation of selected eigenvalues of generalized eigenvalue problems , 1993 .

[40]  P. Schmid,et al.  Analysis of Fluid Systems: Stability, Receptivity, SensitivityLecture notes from the FLOW-NORDITA Summer School on Advanced Instability Methods for Complex Flows, Stockholm, Sweden, 2013 , 2014 .

[41]  D. Sipp,et al.  Time-delayed feedback technique for suppressing instabilities in time-periodic flow , 2017 .

[42]  Dan S. Henningson,et al.  Global three-dimensional optimal disturbances in the Blasius boundary-layer flow using time-steppers , 2010, Journal of Fluid Mechanics.

[43]  W. Arnoldi The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .

[44]  Spencer J. Sherwin,et al.  Encapsulated formulation of the selective frequency damping method , 2013, 1311.7000.

[45]  C. P. Caulfield,et al.  Variational framework for flow optimization using seminorm constraints. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  Homer F. Walker,et al.  NITSOL: A Newton Iterative Solver for Nonlinear Systems , 1998, SIAM J. Sci. Comput..

[47]  L. Pastur,et al.  Three-dimensional centrifugal instabilities development inside a parallelepipedic open cavity of various shape , 2009 .

[48]  P. Schmid Analysis of fluid systems : stability , receptivity , sensitivity , 2013 .

[49]  P. Luchini,et al.  Adjoint Equations in Stability Analysis , 2014, 2404.17304.

[50]  V. Theofilis Advances in global linear instability analysis of nonparallel and three-dimensional flows , 2003 .

[51]  Florent Renac,et al.  Improvement of the recursive projection method for linear iterative scheme stabilization based on an approximate eigenvalue problem , 2011, J. Comput. Phys..

[52]  C. P. Caulfield,et al.  Optimal mixing in two-dimensional plane Poiseuille flow at finite Péclet number , 2014, Journal of Fluid Mechanics.

[53]  C. P. Caulfield,et al.  Localization of flow structures using $\infty $ -norm optimization , 2013, Journal of Fluid Mechanics.

[54]  J. Robinet,et al.  Subcritical transition scenarios via linear and nonlinear localized optimal perturbations in plane Poiseuille flow , 2016 .

[55]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[56]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[57]  Dan S. Henningson,et al.  Input-Output Analysis and Control Design Applied to a Linear Model of Spatially Developing Flows , 2009 .

[58]  R. Kerswell,et al.  An optimization approach for analysing nonlinear stability with transition to turbulence in fluids as an exemplar , 2014, Reports on progress in physics. Physical Society.

[59]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[60]  G. W. Stewart,et al.  A Krylov-Schur Algorithm for Large Eigenproblems , 2001, SIAM J. Matrix Anal. Appl..

[61]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[62]  Fred Wubs,et al.  Numerical Bifurcation Methods and their Application to Fluid Dynamics: Analysis beyond Simulation , 2012 .

[63]  L. Tuckerman,et al.  Bifurcation Analysis for Timesteppers , 2000 .

[64]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[65]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[66]  L. Brandt The lift-up effect : The linear mechanism behind transition and turbulence in shear flows , 2014, 1403.4657.

[67]  R. Helgason,et al.  A matrix method for ordinary differential eigenvalue problems , 1970 .

[68]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[69]  Mujeeb R. Malik,et al.  A spectral collocation method for the Navier-Stokes equations , 1985 .

[70]  W. S. Edwards,et al.  Krylov methods for the incompressible Navier-Stokes equations , 1994 .

[71]  V. Theofilis Global Linear Instability , 2011 .

[72]  Gautam M. Shroff,et al.  Stabilization of unstable procedures: the recursive projection method , 1993 .

[73]  Thomas B. Gatski,et al.  The temporally filtered Navier–Stokes equations: Properties of the residual stress , 2003 .

[74]  Dan S. Henningson,et al.  Matrix-Free Methods for the Stability and Control of Boundary Layers , 2009 .

[75]  T. Bridges,et al.  Differential eigenvalue problems in which the parameter appears nonlinearly , 1984 .

[76]  R. Peyret Spectral Methods for Incompressible Viscous Flow , 2002 .