Procedures for resource leveling and net present value problems in project scheduling with general temporal and resource constraints

Abstract This paper deals with resource-constrained project scheduling problems with nonregular objective functions where general temporal constraints given by minimum and maximum time lags between activities are prescribed. In particular, resource leveling and net present value problems are studied. We present different heuristic and exact procedures for (approximately) solving those problems. A detailed experimental performance analysis shows that these procedures also solve large problem instances in reasonable computing time.

[1]  D. Savin,et al.  A procedure for calculating the weight-matrix of a neural network for resource leveling , 1997 .

[2]  M. A. Younis,et al.  Optimal resource leveling of multi-resource projects , 1996 .

[3]  A. H. Russell Cash Flows in Networks , 1970 .

[4]  L. Valadares Tavares Optimal resource profiles for program scheduling , 1987 .

[5]  Robert B. Harris Packing Method for Resource Leveling (PACK) , 1990 .

[6]  Kum Khiong Yang,et al.  A comparison of stochastic scheduling rules for maximizing project net present value , 1995 .

[7]  Paul Fazio,et al.  Construction resource leveling using neural networks , 1996 .

[8]  Jan Węglarz,et al.  Project scheduling : recent models, algorithms, and applications , 1999 .

[9]  Masanori Takamoto,et al.  Zero-one quadratic programming algorithm for resource leveling of manufacturing process schedules , 1995, Systems and Computers in Japan.

[10]  Erik Demeulemeester,et al.  Project network models with discounted cash flows a guided tour through recent developments , 1997, Eur. J. Oper. Res..

[11]  Dicky C. K. Yan,et al.  Designing tributary networks with multiple ring families , 1998, Comput. Oper. Res..

[12]  Rainer Kolisch,et al.  Project Scheduling under Resource Constraints , 1995 .

[13]  Rolf H. Möhring,et al.  Minimizing Costs of Resource Requirements in Project Networks Subject to a Fixed Completion Time , 1984, Oper. Res..

[14]  Bert De Reyck,et al.  An optimal procedure for the resource-constrained project scheduling problem with discounted cash flows and generalized precedence relations , 1998, Comput. Oper. Res..

[15]  Rinaldo Rinaldi,et al.  Optimal resource leveling using non-serial dyanamic programming , 1994 .

[16]  Rolf H. Möhring,et al.  Scheduling project networks with resource constraints and time windows , 1988 .

[17]  Jack R. Meredith,et al.  Project Management: A Managerial Approach , 1989 .

[18]  Said M. Easa,et al.  Resource Leveling in Construction by Optimization , 1989 .

[19]  Erik Demeulemeester,et al.  Minimizing resource availability costs in time-limited project networks , 1995 .

[20]  Richard C. Grinold,et al.  The payment scheduling problem , 1972 .

[21]  Klaus Neumann,et al.  Active and stable project scheduling , 2000, Math. Methods Oper. Res..

[22]  H. N. Ahuja Construction performance control by networks , 1976 .

[23]  Klaus Neumann,et al.  Resource levelling for projects with schedule-dependent time windows , 1999, Eur. J. Oper. Res..

[24]  J. D. Wiest,et al.  Management Guide to PERT/CPM , 1969 .

[25]  Robert Blynn Harris,et al.  Precedence and Arrow Networking Techniques for Construction , 1980 .

[26]  Klaus Neumann,et al.  Heuristic procedures for resource—constrained project scheduling with minimal and maximal time lags: the resource—levelling and minimum project—duration problems , 1996 .

[27]  Joseph J. Moder,et al.  Project Management with CPM and PERT , 1964 .

[28]  S. Selcuk Erenguc,et al.  A Branch and Bound Procedure for the Resource Constrained Project Scheduling Problem with Discounted Cash Flows , 1996 .

[29]  K. Neumann,et al.  Methods for Resource-Constrained Project Scheduling with Regular and Nonregular Objective Functions and Schedule-Dependent Time Windows , 1999 .

[30]  Erik Demeulemeester An optimal recursive search procedure for the deterministic unconstrained max-nvp project scheduling problem , 1996 .