Adaptive Gradient-Augmented Level Set Method with Multiresolution Error Estimation

A space–time adaptive scheme is presented for solving advection equations in two space dimensions. The gradient-augmented level set method using a semi-Lagrangian formulation with backward time integration is coupled with a point value multiresolution analysis using Hermite interpolation. Thus locally refined dyadic spatial grids are introduced which are efficiently implemented with dynamic quadtree data structures. For adaptive time integration, an embedded Runge–Kutta method is employed. The precision of the new fully adaptive method is analysed and speed up of CPU time and memory compression with respect to the uniform grid discretization are reported.

[1]  Ralf Deiterding,et al.  Block-structured Adaptive Mesh Refinement - Theory, Implementation and Application , 2011 .

[2]  Wolfgang Dahmen,et al.  Numerical simulation of cooling gas injection using adaptive multiresolution techniques , 2013 .

[3]  R. LeVeque,et al.  Adaptive Mesh Refinement Using Wave-Propagation Algorithms for Hyperbolic Systems , 1998 .

[4]  Rüdiger Verfürth,et al.  A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .

[5]  Siegfried Müller,et al.  Adaptive Multiscale Schemes for Conservation Laws , 2002, Lecture Notes in Computational Science and Engineering.

[6]  A. Harten Multiresolution algorithms for the numerical solution of hyperbolic conservation laws , 2010 .

[7]  K. Schneider,et al.  PARTICLE-IN-WAVELETS SCHEME FOR THE 1D VLASOV-POISSON EQUATIONS ∗, ∗∗ , 2010 .

[8]  Ronald Fedkiw,et al.  Simulating water and smoke with an octree data structure , 2004, ACM Trans. Graph..

[9]  Sônia M. Gomes,et al.  A Fully Adaptive Multiresolution Scheme for Shock Computations , 2001 .

[10]  V. Gregory Weirs,et al.  Adaptive Mesh Refinement - Theory and Applications , 2008 .

[11]  Frédéric Gibou,et al.  A local level-set method using a hash table data structure , 2012, J. Comput. Phys..

[12]  S. Popinet Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries , 2003 .

[13]  M. Aftosmis Solution adaptive cartesian grid methods for aerodynamic flows with complex geometries , 1997 .

[14]  Albert Cohen,et al.  Wavelet methods in numerical analysis , 2000 .

[15]  Kai Schneider,et al.  Adaptive multiresolution methods , 2011 .

[16]  R. DeVore,et al.  Nonlinear approximation , 1998, Acta Numerica.

[17]  K. Lindsay,et al.  A particle method and adaptive treecode for vortex sheet motion in three-dimensional flow , 2001 .

[18]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[19]  Kai Schneider,et al.  An adaptive multiresolution scheme with local time stepping for evolutionary PDEs , 2008, J. Comput. Phys..

[20]  Benjamin Seibold,et al.  A gradient-augmented level set method with an optimally local, coherent advection scheme , 2009, J. Comput. Phys..

[21]  A. Harten Multiresolution representation of data: a general framework , 1996 .

[22]  Frédéric Gibou,et al.  A second order accurate level set method on non-graded adaptive cartesian grids , 2007, J. Comput. Phys..

[23]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[24]  Kai Schneider,et al.  Coherent Vortex Simulation of weakly compressible turbulent mixing layers using adaptive multiresolution methods , 2010, J. Comput. Phys..

[25]  Thomas Hagstrom,et al.  On Advection by Hermite Methods , 2011 .

[27]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[28]  J. Ottino The Kinematics of Mixing: Stretching, Chaos, and Transport , 1989 .

[29]  Diego Rossinelli,et al.  MRAG-I2D: Multi-resolution adapted grids for remeshed vortex methods on multicore architectures , 2015, J. Comput. Phys..

[30]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[31]  Rosa Donat,et al.  Point Value Multiscale Algorithms for 2D Compressible Flows , 2001, SIAM J. Sci. Comput..

[32]  A. Staniforth,et al.  Semi-Lagrangian integration schemes for atmospheric models - A review , 1991 .

[33]  Stéphane Popinet,et al.  An accurate adaptive solver for surface-tension-driven interfacial flows , 2009, J. Comput. Phys..

[34]  Richard M. Beam,et al.  Discrete Multiresolution Analysis Using Hermite Interpolation: Biorthogonal Multiwavelets , 2000, SIAM J. Sci. Comput..

[35]  P. J. Prince,et al.  New Runge-Kutta algorithms for numerical simulation in dynamical astronomy , 1978 .

[36]  Daniel F. Martin,et al.  A Cell-Centered Adaptive Projection Method for the Incompressible Euler Equations , 2000 .

[37]  E. Sonnendrücker,et al.  The Semi-Lagrangian Method for the Numerical Resolution of the Vlasov Equation , 1999 .

[38]  Benjamin Seibold,et al.  Jet schemes for advection problems , 2011, 1101.5374.

[39]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[40]  Benjamin Seibold,et al.  A comparative study of the efficiency of jet schemes , 2011, 1104.0542.

[41]  Shuqiang Wang,et al.  Elliptic interface problem solved using the mixed finite element method , 2007 .

[42]  Ralf Deiterding,et al.  An adaptive high-order hybrid scheme for compressive, viscous flows with detailed chemistry , 2011, J. Comput. Phys..

[43]  V. Gregory Weirs,et al.  Adaptive mesh refinement theory and applications : proceedings of the Chicago Workshop on Adaptive Mesh Refinement Methods, Sept. 3-5, 2003 , 2005 .