Adaptive Gradient-Augmented Level Set Method with Multiresolution Error Estimation
暂无分享,去创建一个
[1] Ralf Deiterding,et al. Block-structured Adaptive Mesh Refinement - Theory, Implementation and Application , 2011 .
[2] Wolfgang Dahmen,et al. Numerical simulation of cooling gas injection using adaptive multiresolution techniques , 2013 .
[3] R. LeVeque,et al. Adaptive Mesh Refinement Using Wave-Propagation Algorithms for Hyperbolic Systems , 1998 .
[4] Rüdiger Verfürth,et al. A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .
[5] Siegfried Müller,et al. Adaptive Multiscale Schemes for Conservation Laws , 2002, Lecture Notes in Computational Science and Engineering.
[6] A. Harten. Multiresolution algorithms for the numerical solution of hyperbolic conservation laws , 2010 .
[7] K. Schneider,et al. PARTICLE-IN-WAVELETS SCHEME FOR THE 1D VLASOV-POISSON EQUATIONS ∗, ∗∗ , 2010 .
[8] Ronald Fedkiw,et al. Simulating water and smoke with an octree data structure , 2004, ACM Trans. Graph..
[9] Sônia M. Gomes,et al. A Fully Adaptive Multiresolution Scheme for Shock Computations , 2001 .
[10] V. Gregory Weirs,et al. Adaptive Mesh Refinement - Theory and Applications , 2008 .
[11] Frédéric Gibou,et al. A local level-set method using a hash table data structure , 2012, J. Comput. Phys..
[12] S. Popinet. Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries , 2003 .
[13] M. Aftosmis. Solution adaptive cartesian grid methods for aerodynamic flows with complex geometries , 1997 .
[14] Albert Cohen,et al. Wavelet methods in numerical analysis , 2000 .
[15] Kai Schneider,et al. Adaptive multiresolution methods , 2011 .
[16] R. DeVore,et al. Nonlinear approximation , 1998, Acta Numerica.
[17] K. Lindsay,et al. A particle method and adaptive treecode for vortex sheet motion in three-dimensional flow , 2001 .
[18] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[19] Kai Schneider,et al. An adaptive multiresolution scheme with local time stepping for evolutionary PDEs , 2008, J. Comput. Phys..
[20] Benjamin Seibold,et al. A gradient-augmented level set method with an optimally local, coherent advection scheme , 2009, J. Comput. Phys..
[21] A. Harten. Multiresolution representation of data: a general framework , 1996 .
[22] Frédéric Gibou,et al. A second order accurate level set method on non-graded adaptive cartesian grids , 2007, J. Comput. Phys..
[23] M. Berger,et al. Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .
[24] Kai Schneider,et al. Coherent Vortex Simulation of weakly compressible turbulent mixing layers using adaptive multiresolution methods , 2010, J. Comput. Phys..
[25] Thomas Hagstrom,et al. On Advection by Hermite Methods , 2011 .
[27] Rolf Rannacher,et al. An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.
[28] J. Ottino. The Kinematics of Mixing: Stretching, Chaos, and Transport , 1989 .
[29] Diego Rossinelli,et al. MRAG-I2D: Multi-resolution adapted grids for remeshed vortex methods on multicore architectures , 2015, J. Comput. Phys..
[30] S. Osher,et al. Weighted essentially non-oscillatory schemes , 1994 .
[31] Rosa Donat,et al. Point Value Multiscale Algorithms for 2D Compressible Flows , 2001, SIAM J. Sci. Comput..
[32] A. Staniforth,et al. Semi-Lagrangian integration schemes for atmospheric models - A review , 1991 .
[33] Stéphane Popinet,et al. An accurate adaptive solver for surface-tension-driven interfacial flows , 2009, J. Comput. Phys..
[34] Richard M. Beam,et al. Discrete Multiresolution Analysis Using Hermite Interpolation: Biorthogonal Multiwavelets , 2000, SIAM J. Sci. Comput..
[35] P. J. Prince,et al. New Runge-Kutta algorithms for numerical simulation in dynamical astronomy , 1978 .
[36] Daniel F. Martin,et al. A Cell-Centered Adaptive Projection Method for the Incompressible Euler Equations , 2000 .
[37] E. Sonnendrücker,et al. The Semi-Lagrangian Method for the Numerical Resolution of the Vlasov Equation , 1999 .
[38] Benjamin Seibold,et al. Jet schemes for advection problems , 2011, 1101.5374.
[39] P. Colella,et al. Local adaptive mesh refinement for shock hydrodynamics , 1989 .
[40] Benjamin Seibold,et al. A comparative study of the efficiency of jet schemes , 2011, 1104.0542.
[41] Shuqiang Wang,et al. Elliptic interface problem solved using the mixed finite element method , 2007 .
[42] Ralf Deiterding,et al. An adaptive high-order hybrid scheme for compressive, viscous flows with detailed chemistry , 2011, J. Comput. Phys..
[43] V. Gregory Weirs,et al. Adaptive mesh refinement theory and applications : proceedings of the Chicago Workshop on Adaptive Mesh Refinement Methods, Sept. 3-5, 2003 , 2005 .