Fibre-optic sensor for the determination of polynuclear aromatic hydrocarbons with time-resolved, laser-induced fluorescence

Abstract For in situ and on-line detection of polynuclear aromatic hydrocarbons (PAHs) in water, a fibre-optic sensor system with a fibre length of 50 m is presented. Laser-induced, time-resolved fluorescence spectroscopy allows detection limits in the ng l−1 range. Analytical figures of merit are given for thirteen environmentally relevant PAHs in water. First results for a binary mixture of fluoranthene and pyrene are presented. A deconvolution algorithm is described that simplifies the analysis of time-resolved emission spectra of single- and multi-component PAH mixtures.

[1]  J. McCarthy,et al.  Subsurface transport of contaminants , 1989 .

[2]  Wayne A. Chudyk Field screening of hazardous waste sites. Part 1 , 1989 .

[3]  D. H. Freeman,et al.  Determination of the solubility behavior of some polycyclic aromatic hydrocarbons in water , 1978 .

[4]  Gregory R. Phillips,et al.  Error estimation using the sequential simplex method in nonlinear least squares data analysis , 1988 .

[5]  Stephen R. Meech,et al.  Standards for nanosecond fluorescence decay time measurements , 1983 .

[6]  J. Norris Current status and prospects for the use of optical fibres in chemical analysis. A review , 1989 .

[7]  E Gratton,et al.  Phase fluorometric method for determination of standard lifetimes. , 1988, Analytical chemistry.

[8]  P. Rousseeuw Tutorial to robust statistics , 1991 .

[9]  A S Verkman,et al.  Synthesis and characterization of improved chloride-sensitive fluorescent indicators for biological applications. , 1989, Analytical biochemistry.

[10]  V. Cerdà,et al.  Simultaneous Determination of Polycyclic Aromatic Hydrocarbons by Variable Angle Spectrofluorimetry , 1990 .

[11]  D. F. Eaton Recommended methods for fluorescence decay analysis , 1990 .

[12]  J. M. Harris,et al.  Quantitative estimation of component amplitudes in multiexponential data: application to time-resolved fluorescence spectroscopy , 1989 .

[13]  L. McGown,et al.  Multidimensional data formats for phase-resolved fluorometric multicomponent determinations using synchronous excitation and emission spectra , 1986 .

[14]  D. H. Freeman,et al.  Determination of the aqueous solubility of polynuclear aromatic hydrocarbons by a coupled column liquid chromatographic technique , 1978 .

[15]  K. Burton,et al.  Optimization using the modified simplex method , 1990 .

[16]  P. Plaza,et al.  Simulation et optimisation des capteurs afibres optiques adjacentes. , 1986, Applied optics.

[17]  Time-resolved fluorescence with an optical-fiber probe , 1987 .

[18]  S. Kinoshita,et al.  Subnanosecond fluorescence‐lifetime measuring system using single photon counting method with mode‐locked laser excitation , 1981 .

[19]  C. Poole,et al.  Polycyclic Aromatic Hydrocarbon Solute Probes: Effect of Solvent Polarity on the Ovalene and Benzo[ghi]perylene Fluorescence Emission Fine Structures , 1988 .

[20]  Joel M. Harris,et al.  Resolution of multicomponent fluorescence spectra by an emission wavelength-decay time data matrix , 1981 .

[21]  F. Lytle,et al.  Blank limitations in laser excited solution luminescence , 1979 .

[22]  Frank V. Bright,et al.  Fluorescence spectra and lifetimes of several fluorophores immobilized on nonionic resins for use in fiber-optic sensors , 1987 .

[23]  Y. Kawabata,et al.  Laser fluorimetry of polynuclear aromatic hydrocarbons based on time-resolved fluorescence detection , 1985 .

[24]  Jay R. Knutson,et al.  Simultaneous analysis of multiple fluorescence decay curves: A global approach , 1983 .

[25]  K. Burton,et al.  Optimisation via simplex , 1987 .

[26]  R. K. Force,et al.  Analysis of polynuclear aromatic hydrocarbon mixtures in various environments by time-resolved fluorescence spectroscopy. , 1991, Talanta.

[27]  M. Barkley,et al.  Comparison of approaches to the instrumental response function in fluorescence decay measurements. , 1986, Analytical biochemistry.

[28]  James N. Miller Basic statistical methods for Analytical Chemistry. Part 2. Calibration and regression methods. A review , 1991 .

[29]  S. Wasik,et al.  Fluorescence measurements of benzene, naphthalene, anthracene, pyrene, fluoranthene, and benzo(e)pyrene in water. , 1976, Analytical chemistry.

[30]  M. Ando,et al.  Sub-part-per-trillion detection of polycyclic aromatic hydrocarbons by laser induced molecular fluorescence. , 1977, Analytical chemistry.

[31]  S. Kinoshita,et al.  High‐performance, time‐correlated single photon counting apparatus using a side‐on type photomultiplier , 1982 .

[32]  M L Myrick,et al.  Comparison of some fiber optic configurations for measurement of luminescence and Raman scattering. , 1990, Applied optics.

[33]  F V Bright,et al.  Multicomponent fluorometric analysis using a fiber-optic probe. , 1989, Analytical chemistry.

[34]  Michael Zuker,et al.  Delta function convolution method (DFCM) for fluorescence decay experiments , 1985 .

[35]  Stephen H. Lieberman,et al.  Development of a pulsed-laser, fiber-optic-based fluorimeter: determination of fluorescence decay times of polycyclic aromatic hydrocarbons in sea water , 1990 .