Statistical estimation of global surface temperature response to forcing under the assumption of temporal scaling

Abstract. Reliable quantification of the global mean surface temperature (GMST) response to radiative forcing is essential for assessing the risk of dangerous anthropogenic climate change. We present the statistical foundations for an observation-based approach using a stochastic linear response model that is consistent with the long-range temporal dependence observed in global temperature variability. We have incorporated the model in a latent Gaussian modeling framework, which allows for the use of integrated nested Laplace approximations (INLAs) to perform full Bayesian analysis. As examples of applications, we estimate the GMST response to forcing from historical data and compute temperature trajectories under the Representative Concentration Pathways (RCPs) for future greenhouse gas forcing. For historic runs in the Model Intercomparison Project Phase 5 (CMIP5) ensemble, we estimate response functions and demonstrate that one can infer the transient climate response (TCR) from the instrumental temperature record. We illustrate the effect of long-range dependence by comparing the results with those obtained from one-box and two-box energy balance models. The software developed to perform the given analyses is publicly available as the R package INLA.climate.

[1]  Bo Li,et al.  Efficient Reconstructions of Common Era Climate via Integrated Nested Laplace Approximations , 2018, Journal of Agricultural, Biological and Environmental Statistics.

[2]  Håvard Rue,et al.  An approximate fractional Gaussian noise model with $$\mathcal {O}(n)$$O(n) computational cost , 2017, Stat. Comput..

[3]  H. Fredriksen,et al.  Emergent constraints on climate sensitivity , 2018, Nature.

[4]  H. Fredriksen,et al.  Emergent Scale Invariance and Climate Sensitivity , 2018, Climate.

[5]  P. Cox,et al.  Emergent constraint on equilibrium climate sensitivity from global temperature variability , 2018, Nature.

[6]  S. Klein,et al.  On the Emergent Constraints of Climate Sensitivity , 2018 .

[7]  B. Boer,et al.  A State-Dependent Quantification of Climate Sensitivity Based on Paleodata of the Last 2.1 Million Years , 2017 .

[8]  Haavard Rue,et al.  An approximate fractional Gaussian noise model with computational cost , 2017 .

[9]  H. Fredriksen,et al.  Long-Range Persistence in Global Surface Temperatures Explained by Linear Multibox Energy Balance Models , 2017, 1701.07355.

[10]  H. Rue,et al.  Fractional Gaussian noise: Prior specification and model comparison , 2016, 1611.06399.

[11]  P. Ashwin,et al.  State-dependence of climate sensitivity: attractor constraints and palaeoclimate regimes , 2016, 1604.03311.

[12]  Haavard Rue,et al.  Bayesian Computing with INLA: A Review , 2016, 1604.00860.

[13]  Kristoffer Rypdal,et al.  Spectral characteristics of instrumental and climate model surface temperatures , 2016 .

[14]  M. Rypdal,et al.  Late Quaternary temperature variability described as abrupt transitions on a 1/ f noise background , 2015 .

[15]  H. Fredriksen,et al.  Spatiotemporal Long-Range Persistence in Earth’s Temperature Field: Analysis of Stochastic–Diffusive Energy Balance Models , 2015 .

[16]  Fang Wang,et al.  An overview of BCC climate system model development and application for climate change studies , 2014, Journal of Meteorological Research.

[17]  Thiago G. Martins,et al.  Penalising Model Component Complexity: A Principled, Practical Approach to Constructing Priors , 2014, 1403.4630.

[18]  William M. Putman,et al.  Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive , 2014 .

[19]  M. Rypdal,et al.  Long-Memory Effects in Linear Response Models of Earth's Temperature and Implications for Future Global Warming , 2013, 1305.5080.

[20]  K. Caldeira,et al.  Projections of the pace of warming following an abrupt increase in atmospheric carbon dioxide concentration , 2013 .

[21]  B. Stevens,et al.  Climate and carbon cycle changes from 1850 to 2100 in MPI‐ESM simulations for the Coupled Model Intercomparison Project phase 5 , 2013 .

[22]  A. Kirkevåg,et al.  The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate , 2013 .

[23]  Shaun Lovejoy,et al.  The Weather and Climate: Emergent Laws and Multifractal Cascades , 2013 .

[24]  D. Saint‐Martin,et al.  Transient Climate Response in a Two-Layer Energy-Balance Model. Part I: Analytical Solution and Parameter Calibration Using CMIP5 AOGCM Experiments , 2013 .

[25]  S. Jeffrey,et al.  Australia's CMIP5 submission using the CSIRO-Mk3.6 model , 2013 .

[26]  E. Kowalczyk,et al.  The ACCESS coupled model: description, control climate and evaluation , 2013 .

[27]  S. Bony,et al.  Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5 , 2013, Climate Dynamics.

[28]  T. Andrews,et al.  Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models , 2013 .

[29]  J. Hansen,et al.  Climate sensitivity, sea level and atmospheric carbon dioxide , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[30]  Finn Lindgren,et al.  Bayesian computing with INLA: New features , 2012, Comput. Stat. Data Anal..

[31]  Krista,et al.  GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part II: Carbon System Formulation and Baseline Simulation Characteristics* , 2013 .

[32]  Shaun Lovejoy,et al.  The Weather and Climate: Emergent Laws and Multifractal Cascades: The climate , 2013 .

[33]  Stephen Jeffrey,et al.  Australia ’ s CMIP 5 submission using the CSIRO-Mk 3 . 6 model , 2013 .

[34]  H. Douville,et al.  The CNRM-CM5.1 global climate model: description and basic evaluation , 2013, Climate Dynamics.

[35]  Ivar A. Seierstad,et al.  The Norwegian Earth System Model, NorESM1-M – Part 2: Climate response and scenario projections , 2012 .

[36]  S. Jeffrey,et al.  Aerosol- and greenhouse gas-induced changes in summer rainfall and circulation in the Australasian region: a study using single-forcing climate simulations , 2012 .

[37]  P. Jones,et al.  Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set , 2012 .

[38]  Ronald,et al.  GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics , 2012 .

[39]  K. Rypdal Global temperature response to radiative forcing: Solar cycle versus volcanic eruptions , 2012 .

[40]  P. Jones,et al.  Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010: LAND-SURFACE TEMPERATURE VARIATIONS , 2012 .

[41]  H. Tsujino,et al.  A New Global Climate Model of the Meteorological Research Institute: MRI-CGCM3 —Model Description and Basic Performance— , 2012 .

[42]  R. Quentin Grafton,et al.  global surface temperature , 2012 .

[43]  C. Jones,et al.  Development and evaluation of an Earth-System model - HadGEM2 , 2011 .

[44]  G. Flato Earth system models: an overview , 2011 .

[45]  S. Emori,et al.  MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments , 2011 .

[46]  C. Jones,et al.  The HadGEM2 family of Met Office Unified Model climate configurations , 2011 .

[47]  M. Dubey,et al.  Observed and model simulated 20th century Arctic temperature variability: Canadian Earth System Model CanESM2 , 2011 .

[48]  John Kennedy,et al.  Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 2. Biases and homogenization , 2011 .

[49]  Nick Rayner,et al.  Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 1. Measurement and sampling uncertainties , 2011 .

[50]  T. Takemura,et al.  Geoscientific Model Development MIROC-ESM 2010 : model description and basic results of CMIP 5-20 c 3 m experiments , 2011 .

[51]  R. Knutti,et al.  Weather and Climate , 2010 .

[52]  H. Hasumi,et al.  Improved Climate Simulation by MIROC5: Mean States, Variability, and Climate Sensitivity , 2010, Journal of Climate.

[53]  J. Hansen,et al.  GLOBAL SURFACE TEMPERATURE CHANGE , 2010 .

[54]  Christian L. E. Franzke,et al.  Long-Range Dependence and Climate Noise Characteristics of Antarctic Temperature Data , 2010 .

[55]  E. Volodin,et al.  Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations , 2010 .

[56]  Ramaswamy,et al.  The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3 , 2011 .

[57]  T. Delworth,et al.  Probing the Fast and Slow Components of Global Warming by Returning Abruptly to Preindustrial Forcing , 2010 .

[58]  E. Arjas,et al.  Comment on "Using multiple observationally-based constraints to estimate climate sensitivity" by J. D. Annan and J. C. Hargreaves, Geophys. Res. Lett., 33, L06704, doi:10.1029/2005GL025259, 2006 , 2009 .

[59]  J. Edmonds,et al.  Implications of Limiting CO2 Concentrations for Land Use and Energy , 2009, Science.

[60]  H. Rue,et al.  Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .

[61]  Toshihiko Masui,et al.  GLOBAL GHG EMISSION SCENARIOS UNDER GHG CONCENTRATION STABILIZATION TARGETS , 2008 .

[62]  N. Nakicenovic,et al.  Scenarios of long-term socio-economic and environmental development under climate stabilization , 2007 .

[63]  Bas Eickhout,et al.  Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs , 2007 .

[64]  S. Martino Approximate Bayesian Inference for Latent Gaussian Models , 2007 .

[65]  J. Edmonds,et al.  Scenarios of Greenhouse Gas Emissions and Atmospheric Concentrations , 2007 .

[66]  Toshihiko Masui,et al.  Multi-gas Mitigation Analysis on Stabilization Scenarios Using Aim Global Model , 2006 .

[67]  Tom M. L. Wigley,et al.  Multi-Gas Forcing Stabilization with Minicam , 2006 .

[68]  Hans von Storch,et al.  Long‐term persistence in climate and the detection problem , 2006 .

[69]  J. Annan,et al.  Using multiple observationally‐based constraints to estimate climate sensitivity , 2006 .

[70]  Peter Huybers,et al.  Links between annual, Milankovitch and continuum temperature variability , 2005, Nature.

[71]  Masuhiro Kogoma 総論;総論;Introduction , 2006 .

[72]  L. Held,et al.  Gaussian Markov Random Fields: Theory And Applications (Monographs on Statistics and Applied Probability) , 2005 .

[73]  Leonhard Held,et al.  Gaussian Markov Random Fields: Theory and Applications , 2005 .

[74]  G. Danabasoglu,et al.  The Community Climate System Model Version 4 , 2011 .

[75]  P. Jones,et al.  Hemispheric and Large-Scale Surface Air Temperature Variations: An Extensive Revision and an Update to 2001. , 2003 .

[76]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[77]  L. Tierney,et al.  Accurate Approximations for Posterior Moments and Marginal Densities , 1986 .

[78]  H. Künsch Gaussian Markov random fields , 1979 .