Impact of aerosols present in Titan's atmosphere on the CASSINI radar experiment

Simulations of Titan's atmospheric transmission and surface reflectivity have been developed in order to estimate how Titan's atmosphere and surface properties could affect performances of the Cassini radar experiment. In this paper we present a selection of models for Titan's haze, vertical rain distribution, and surface composition implemented in our simulations. We collected dielectric constant values for the Cassini radar wavelength ($\sim 2.2$ cm) for materials of interest for Titan: liquid methane, liquid mixture of methane-ethane, water ice and light hydrocarbon ices. Due to the lack of permittivity values for Titan's haze particles in the microwave range, we performed dielectric constant ($\varepsilon_r$) measurements around $2.2$ cm on tholins synthesized in laboratory. We obtained a real part of $\varepsilon_r$ in the range of 2-2.5 and a loss tangent between $10^{-3}$ and $5.10^{-2}$. By combining aerosol distribution models (with hypothetical condensation at low altitudes) to surface models, we find the following results: (1) Aerosol-only atmospheres should cause no loss and are essentially transparent for Cassini radar, as expected by former analysis. (2) However, if clouds are present, some atmospheric models generate significant attenuation that can reach $-50 dB$, well below the sensitivity threshold of the receiver. In such cases, a $13.78 GHz$ radar would not be able to measure echoes coming from the surface. We thus warn about possible risks of misinterpretation if a \textquotedblleft wet atmosphere\textquotedblright $ $is not taken into account. (3) Rough surface scattering leads to a typical response of $\sim -17 dB$. These results will have important implications on future Cassini radar data analysis.

[1]  Emmanuel Lellouch,et al.  Erratum: ``Vertical distribution of Titan's atmospheric neutral constituents'' , 1996 .

[2]  E. Chassefière,et al.  Fractal aggregates in Titan's atmosphere , 1993 .

[3]  C. McKay,et al.  The thermal structure of Titan's atmosphere. , 1989, Icarus.

[4]  T V Johnson,et al.  Encounter with saturn: voyager 1 imaging science results. , 1981, Science.

[5]  Hyo J. Eom,et al.  Multiple scattering and depolarization by a randomly rough Kirchhoff surface , 1981 .

[6]  L. Horn,et al.  Infrared observations of the saturnian system from voyager 1. , 1981, Science.

[7]  R. Samuelson,et al.  Steady-state model for methane condensation in Titan's troposphere , 1997 .

[8]  D. Muhleman,et al.  Radar Reflectivity of Titan , 1990, Science.

[9]  David Coscia,et al.  Experimental laboratory simulation of Titan's atmosphere: aerosols and gas phase , 1999 .

[10]  C P McKay,et al.  Photochemical modeling of Titan's atmosphere , 1995, Icarus.

[11]  J. Pollack,et al.  Vertical distribution of scattering hazes in Titan's upper atmosphere , 1983 .

[12]  L. Giver,et al.  Inhomogeneous models of Titan's aerosol distribution , 1984 .

[13]  B. Schmitt,et al.  Plausible condensates in Titan’s stratosphere from Voyager infrared spectra , 1999 .

[14]  Christopher P. McKay,et al.  Elemental composition, solubility, and optical properties of Titan's organic haze , 1996 .

[15]  D. Hunten,et al.  Titan's thermosphere profile , 1990 .

[16]  C. P. McKaya,et al.  Physical properties of the organic aerosols and clouds on Titan , 2000 .

[17]  Christopher P. McKay,et al.  Titan's Surface: Composition and Variability from the Near-Infrared Albedo , 1994 .

[18]  D. Gautier,et al.  Titan's thermal emission spectrum: Reanalysis of the Voyager infrared measurements. , 1995 .

[19]  R. Turco,et al.  A physical model of Titan's clouds , 1980 .

[20]  J. L. Hall,et al.  Detection of daily clouds on Titan. , 2000, Science.

[21]  M. W. Williams,et al.  Optical constants of organic tholins produced in a simulated Titanian atmosphere: From soft x-ray to microwave frequencies , 1984 .

[22]  R. E. Danielson,et al.  Axel dust on Saturn and Titan , 1977 .

[23]  E. Chassefière,et al.  Growth of aerosols in Titan's atmosphere and related time scales: A stochastic approach , 1993 .

[24]  J. L. Mitchell,et al.  A New Look at the Saturn System: The Voyager 2 Images , 1982, Science.

[25]  R. Lorenz The life, death and afterlife of a raindrop on Titan , 1993 .

[26]  B. Zellner The polarization of Titan , 1973 .

[27]  C. McKay,et al.  Titan’s Atmosphere and Surface from Infrared Spectroscopy and Imagery , 1997 .

[28]  T. Owen,et al.  Transient clouds in Titan's lower atmosphere , 1998, Nature.

[29]  L. Giver,et al.  On inhomogeneous scattering models of Titan's atmosphere , 1979 .

[30]  C. Sagan,et al.  Red clouds in reducing atmospheres , 1973 .

[31]  J. Lunine,et al.  TITAN'S SURFACE REVIEWED: THE NATURE OF BRIGHT AND DARK TERRAIN , 1997 .

[32]  Carl Sagan,et al.  Production and condensation of organic gases in the atmosphere of Titan , 1984 .

[33]  G. F. Lindal,et al.  Is Titan Wet or Dry? , 1983, Science.

[34]  R. Miller,et al.  Compressed-liquid dielectric constants and derived excess volumes for binary and ternary mixtures of N2, Ar, CH4, and C2H6 , 1979 .

[35]  F. Raulin,et al.  Microphysical modeling of titan's aerosols: Application to the in situ analysis , 1990 .

[36]  V. Anicich,et al.  Dielectric constant of liquid alkanes and hydrocarbon mixtures. , 1992, Journal of physics D: Applied physics.

[37]  Martin G. Tomasko,et al.  Photometry and polarimetry of Titan: Pioneer 11 observations and their implications for aerosol properties , 1982 .

[38]  Laurent M. Mugnier,et al.  Images of Titan at 1.3 and 1.6 μm with Adaptive Optics at the CFHT , 2001 .

[39]  Patrice Coll,et al.  Report and implications of the first observation of C4N2 in laboratory simulations of Titan’s atmosphere , 1999 .

[40]  C. Werner,et al.  Cassini Titan Radar Mapper , 1991, Proc. IEEE.

[41]  R. E. Danielson,et al.  An inversion in the atmosphere of Titan , 1973 .

[42]  J. Lunine,et al.  Ethane Ocean on Titan , 1983, Science.

[43]  Steven W. Squyres,et al.  Titan and other icy satellites: Dielectric properties of constituent materials and implications for radar sounding , 1990 .

[44]  Mark T. Lemmon,et al.  Titan's Surface, Revealed by HST Imaging , 1996 .

[45]  R. Botet,et al.  Titan's Geometric Albedo: Role of the Fractal Structure of the Aerosols , 1995 .

[46]  R. Lorenz The surface of Titan in the context of ESA's Huygens probe. , 1993 .

[47]  C. McKay,et al.  Methane rain on Titan , 1988 .

[48]  R. Khanna,et al.  Vibrational infrared and raman spectra of dicyanoacetylene , 1987 .

[49]  L. Guez,et al.  Importance of Phase Changes in Titan's Lower Atmosphere. Tools for the Study of Nucleation , 1997 .

[50]  M. Tomasko Preliminary results of polarimetry and photometry of Titan at large phase angles from Pioneer 11 , 1980 .

[51]  E. Chassefière,et al.  Formation and growth of photochemical aerosols in Titan's atmosphere , 1992 .

[52]  Akira Ishimaru,et al.  Wave propagation and scattering in random media , 1997 .

[53]  J. Pollack,et al.  Titan aerosols: Optical properties and vertical distribution , 1980 .

[54]  Wolfgang Dierking,et al.  Quantitative roughness characterization of geological surfaces and implications for radar signature analysis , 1999, IEEE Trans. Geosci. Remote. Sens..

[55]  J. Veverka Titan: Polarimetric evidence for an optically thick atmosphere? , 1972 .

[56]  M. Allen,et al.  Photochemistry of the atmosphere of Titan: comparison between model and observations. , 1984, The Astrophysical journal. Supplement series.

[57]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[58]  J. Hansen,et al.  Light scattering in planetary atmospheres , 1974 .

[59]  Donald T. Gavel,et al.  Titan: High-Resolution Speckle Images from the Keck Telescope , 1999 .