Toward a scalable, silicon-based quantum computing architecture

Advances in quantum devices have brought scalable quantum computation closer to reality. We focus on the system-level issues of how quantum devices can be brought together to form a scalable architecture. In particular, we examine promising silicon-based proposals. We discover that communication of quantum data is a critical resource in such proposals. We find that traditional techniques using quantum SWAP gates are exponentially expensive as distances increase and propose quantum teleportation as a means to communicate data over longer distances on a chip. Furthermore, we find that realistic quantum error-correction circuits use a recursive structure that benefits from using teleportation for long-distance communication. We identify a set of important architectural building blocks necessary for constructing scalable communication and computation. Finally, we explore an actual layout scheme for recursive error correction, and demonstrate the exponential growth in communication costs with levels of recursion, and that teleportation limits those costs.

[1]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[2]  Steane,et al.  Simple quantum error-correcting codes. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[3]  Hood,et al.  Measurement of conditional phase shifts for quantum logic. , 1995, Physical review letters.

[4]  Siyuan Han,et al.  Coherent Temporal Oscillations of Macroscopic Quantum States in a Josephson Junction , 2002, Science.

[5]  King,et al.  Demonstration of a fundamental quantum logic gate. , 1995, Physical review letters.

[6]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[7]  J. R. Tucker,et al.  Can single-electron integrated circuits and quantum computers be fabricated in silicon? , 2000, Int. J. Circuit Theory Appl..

[8]  Colin P. Williams,et al.  Quantum Atomic Clock Synchronization Based on Shared Prior Entanglement , .

[9]  Konstantin K. Likharev,et al.  Single-electron devices and their applications , 1999, Proc. IEEE.

[10]  I. Chuang,et al.  Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.

[11]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[12]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[13]  Daniel Gottesman Fault-tolerant quantum computation with local gates , 2000 .

[14]  C. Monroe,et al.  Experimental entanglement of four particles , 2000, Nature.

[15]  Y. Makhlin,et al.  Quantum-state engineering with Josephson-junction devices , 2000, cond-mat/0011269.

[16]  Frederic T. Chong,et al.  A Practical Architecture for Reliable Quantum Computers , 2002, Computer.

[17]  P. Seddighrad,et al.  Qubits with electrons on liquid helium , 2003 .

[18]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[19]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[20]  Sean Hallgren,et al.  Polynomial-time quantum algorithms for Pell's equation and the principal ideal problem , 2002, STOC '02.

[21]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[22]  Umesh V. Vazirani,et al.  Molecular scale heat engines and scalable quantum computation , 1999, STOC '99.

[23]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[24]  Frederic T. Chong,et al.  The effect of communication costs in solid-state quantum computing architectures , 2003, SPAA '03.

[25]  D. Ferry,et al.  Transport in nanostructures , 1999 .

[26]  S. Lloyd Quantum-Mechanical Computers , 1995 .

[27]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[28]  P. Joyez,et al.  Manipulating the Quantum State of an Electrical Circuit , 2002, Science.

[29]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[30]  Frederic T. Chong,et al.  Building quantum wires: the long and the short of it , 2003, 30th Annual International Symposium on Computer Architecture, 2003. Proceedings..

[31]  S. Braunstein,et al.  Quantum computation , 1996 .

[32]  E. Knill,et al.  Resilient Quantum Computation , 1998 .

[33]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[34]  N. Gershenfeld,et al.  Quantum Computing with Molecules , 1998 .

[35]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[36]  J. Bell,et al.  Speakable and Unspeakable in Quatum Mechanics , 1988 .

[37]  Philippe Hurat,et al.  Practical application of full-feature alternating phase-shifting technology for a phase-aware standard-cell design flow , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[38]  Andrew M. Childs,et al.  Robustness of adiabatic quantum computation , 2001, quant-ph/0108048.

[39]  R. Martinez,et al.  An algorithmic benchmark for quantum information processing , 2000, Nature.

[40]  M. Coffey Quantum computing based on a superconducting quantum interference device: exploiting the flux basis , 2002 .

[41]  G. J. Milburn,et al.  Single Spin Measurement using Single Electron Transistors to Probe Two Electron Systems , 2000 .

[42]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[43]  Eli Yablonovitch,et al.  Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures , 1999, quant-ph/9905096.

[44]  Gadiel Seroussi,et al.  Efficient Quantum Algorithms for Estimating Gauss Sums , 2002, quant-ph/0207131.

[45]  MIT,et al.  Non-thermal nuclear magnetic resonance quantum computing using hyperpolarized xenon , 2001 .

[46]  Chuang Quantum algorithm for distributed clock synchronization , 2000, Physical review letters.

[47]  B. E. Kane,et al.  Hydrogenic spin quantum computing in silicon: a digital approach. , 2002, Physical review letters.

[48]  Gregory Breyta,et al.  Experimental realization of order-finding with a quantum computer , 2000 .

[49]  L M Vandersypen,et al.  Experimental realization of an order-finding algorithm with an NMR quantum computer. , 2000, Physical review letters.

[50]  Mark L. Schattenburg,et al.  Metrology of electron‐beam lithography systems using holographically produced reference samples , 1991 .

[51]  D. Gottesman Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.

[52]  Colin P. Williams,et al.  Quantum clock synchronization based on shared prior entanglement , 2000, Physical review letters.

[53]  U. Vazirani,et al.  Scalable NMR Quantum Computation , 1998, quant-ph/9804060.

[54]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[55]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[56]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and EPR channels , 1993 .

[57]  David H. Bailey,et al.  NASA applications of molecular nanotechnology , 1998 .