Boltzmann-type control of opinion consensus through leaders

The study of formations and dynamics of opinions leading to the so-called opinion consensus is one of the most important areas in mathematical modelling of social sciences. Following the Boltzmann-type control approach recently introduced by the first two authors, we consider a group of opinion leaders who modify their strategy accordingly to an objective functional with the aim of achieving opinion consensus. The main feature of the Boltzmann-type control is that, owing to an instantaneous binary control formulation, it permits the minimization of the cost functional to be embedded into the microscopic leaders’ interactions of the corresponding Boltzmann equation. The related Fokker–Planck asymptotic limits are also derived, which allow one to give explicit expressions of stationary solutions. The results demonstrate the validity of the Boltzmann-type control approach and the capability of the leaders’ control to strategically lead the followers’ opinion.

[1]  E. Ben-Naim Opinion dynamics: Rise and fall of political parties , 2004, cond-mat/0411427.

[2]  P. Markowich,et al.  Boltzmann and Fokker–Planck equations modelling opinion formation in the presence of strong leaders , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  J. Michael Harrison,et al.  Instantaneous Control of Brownian Motion , 1983, Math. Oper. Res..

[4]  K. Kunisch,et al.  Instantaneous control of backward-facing step flows , 1999 .

[5]  Rainer Hegselmann,et al.  Opinion dynamics and bounded confidence: models, analysis and simulation , 2002, J. Artif. Soc. Soc. Simul..

[6]  Eduardo F. Camacho,et al.  Model Predictive Controllers , 2007 .

[7]  David Q. Mayne,et al.  Model predictive control: Recent developments and future promise , 2014, Autom..

[8]  Lorenzo Pareschi,et al.  Kinetic models for socio-economic dynamics of speculative markets , 2010, 1009.5499.

[9]  Adelinde M. Uhrmacher,et al.  Interacting multi-agent and simulation systems: an exploration into mole and james , 2001, AGENTS '01.

[10]  Christian A. Ringhofer,et al.  Feedback controls for continuous priority models in supply chain management , 2011, Comput. Methods Appl. Math..

[11]  Benedetto Piccoli,et al.  Multiscale Modeling of Granular Flows with Application to Crowd Dynamics , 2010, Multiscale Model. Simul..

[12]  Francesco Salvarani,et al.  A KINETIC APPROACH TO THE STUDY OF OPINION FORMATION , 2009 .

[13]  S. Redner,et al.  Constrained opinion dynamics: freezing and slow evolution , 2003 .

[14]  Katarzyna Sznajd-Weron,et al.  Opinion evolution in closed community , 2000, cond-mat/0101130.

[15]  Massimo Fornasier,et al.  Fluid dynamic description of flocking via the Povzner–Boltzmann equation , 2011 .

[16]  Christian A. Ringhofer,et al.  Large-Scale Dynamics of Mean-Field Games Driven by Local Nash Equilibria , 2014, J. Nonlinear Sci..

[17]  Rinaldo M. Colombo,et al.  Confinement Strategies in a Model for the Interaction between Individuals and a Continuum , 2012, SIAM J. Appl. Dyn. Syst..

[18]  A. Bensoussan,et al.  Mean Field Games and Mean Field Type Control Theory , 2013 .

[19]  Alfio Borzì,et al.  Modeling and control through leadership of a refined flocking system , 2015 .

[20]  Ramachandran Bharath,et al.  Mathematical Modeling of Collective Behaviour in Socio-Economic and Life Sciences , 2014, J. Oper. Res. Soc..

[21]  M. Fornasier,et al.  Mean-Field Optimal Control , 2013, 1306.5913.

[22]  S. Galam,et al.  Sociophysics: A new approach of sociological collective behaviour. I. mean‐behaviour description of a strike , 1982, 2211.07041.

[23]  Philippe G. Ciarlet,et al.  A NEW DUALITY APPROACH TO ELASTICITY , 2012 .

[24]  Lorenzo Pareschi,et al.  Binary Interaction Algorithms for the Simulation of Flocking and Swarming Dynamics , 2012, Multiscale Model. Simul..

[25]  P. Lions,et al.  Mean field games , 2007 .

[26]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[27]  Lorenzo Pareschi,et al.  Modeling of self-organized systems interacting with a few individuals: From microscopic to macroscopic dynamics , 2012, Appl. Math. Lett..

[28]  Dirk Helbing,et al.  Self-organized control of irregular or perturbed network traffic; Optimal Control and Dynamic Games , 2005, physics/0511018.

[29]  B. M. Fulk MATH , 1992 .

[30]  Cédric Villani,et al.  On a New Class of Weak Solutions to the Spatially Homogeneous Boltzmann and Landau Equations , 1998 .

[31]  J. Boudec,et al.  The Bounded Confidence Model Of Opinion Dynamics , 2010, 1006.3798.

[32]  M. Burger,et al.  Mean field games with nonlinear mobilities in pedestrian dynamics , 2013, 1304.5201.

[33]  G. Toscani,et al.  Kinetic models of opinion formation , 2006 .

[34]  H. Michalska,et al.  Receding horizon control of nonlinear systems , 1988, Proceedings of the 28th IEEE Conference on Decision and Control,.

[35]  Sébastien Motsch,et al.  Heterophilious Dynamics Enhances Consensus , 2013, SIAM Rev..

[36]  S Hanley,et al.  Populist Radical Right Parties in Europe. , 2008 .

[37]  Ezequiel V Albano,et al.  Dynamic behavior of a social model for opinion formation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  H. Hotelling Stability in Competition , 1929 .

[39]  Giuseppe Toscani,et al.  The Grazing Collision Limit of the Inelastic Kac Model around a Lévy-type Equilibrium , 2011, SIAM J. Math. Anal..

[40]  M. Marchesi,et al.  Scaling and criticality in a stochastic multi-agent model of a financial market , 1999, Nature.

[41]  E. Ben-Naim,et al.  Bifurcations and patterns in compromise processes , 2002, cond-mat/0212313.

[42]  G. Weisbuch,et al.  Persuasion dynamics , 2004, cond-mat/0410200.