Construction of optimal ternary constant weight codes via Bhaskar Rao designs

In this note, we consider a construction for optimal ternary constant weight codes (CWCs) via Bhaskar Rao designs (BRDs). The known existence results for BRDs are employed to generate many new optimal nonlinear ternary CWCs with constant weight 4 and minimum Hamming distance 5.

[1]  Alexander Vardy,et al.  Upper bounds for constant-weight codes , 2000, IEEE Trans. Inf. Theory.

[2]  Patric R. J. Östergård,et al.  Bounds and constructions for ternary constant-composition codes , 2002, IEEE Trans. Inf. Theory.

[3]  M. Svanstrom A lower bound for ternary constant weight codes , 1997 .

[4]  A. J. Han Vinck,et al.  On the Constructions of Constant-Weight Codes , 1998, IEEE Trans. Inf. Theory.

[5]  Cunsheng Ding,et al.  Some new codes from algebraic curves , 2000, IEEE Trans. Inf. Theory.

[6]  G. Ge,et al.  Starters and related codes , 2000 .

[7]  N. J. A. Sloane,et al.  Bounds on Mixed Binary/Ternary Codes , 1998, IEEE Trans. Inf. Theory.

[8]  Ludo M. G. M. Tolhuizen,et al.  On Perfect Ternary Constant Weight Codes , 1999, Des. Codes Cryptogr..

[9]  Hanfried Lenz,et al.  Design theory , 1985 .

[10]  J. Seberry,et al.  Maximal ternary codes and Plotkin's bound , 1984 .

[11]  Jennifer Seberry,et al.  On Bhaskar Rao designs of block size four , 1984 .

[12]  Patric R. J. Östergård,et al.  More c-Bhaskar Rao designs with small block size , 2003, Discret. Math..

[13]  Mattias Svanström A Class of Perfect Ternary Constant-Weight Codes , 1999, Des. Codes Cryptogr..

[14]  Dianhua Wu,et al.  4‐*GDDs(3n) and generalized Steiner systems GS(2, 4, v, 3) , 2003 .

[15]  Clement W. H. Lam,et al.  Bhaskar Rao designs with block size four , 2003, Discret. Math..

[16]  L. Zhu,et al.  Generalized Steiner Systems GS(2, 4, v, 2) with v a Prime Power ≡ 7 (mod 12) , 2001 .

[17]  G. Ge,et al.  Generalized Steiner Systems Gs 4 (2y 4y Vy G) for G ˆ 2y 3y 6 , 2001 .

[18]  Jennifer Seberry Regular group divisible designs and Bhaskar Rao designs with block size three , 1984 .

[19]  Torleiv Kløve,et al.  On the Svanström bound for ternary constant-weight codes , 2001, IEEE Trans. Inf. Theory.

[20]  Frank R. Kschischang,et al.  Some ternary and quaternary codes and associated sphere packings , 1992, IEEE Trans. Inf. Theory.

[21]  Gennian Ge,et al.  Generalized Steiner systems GS4 (2, 4, v, g) for g = 2, 3, 6 , 2001 .

[22]  Gennian Ge,et al.  Generalized steiner triple systems with group size five , 1999 .

[23]  C. Colbourn,et al.  The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.

[24]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[25]  Dinesh G. Sarvate,et al.  On c‐Bhaskar Rao designs with block size 4 , 2002 .

[26]  Tuvi Etzion,et al.  Optimal constant weight codes over Zk and generalized designs , 1997, Discret. Math..

[27]  Emile H. L. Aarts,et al.  Genetic Algorithms in Coding Theory - A Table for A3(n, d) , 1993, Discret. Appl. Math..

[28]  Jianxing Yin,et al.  Maximum distance holey packings and related codes , 1999 .

[29]  N. J. A. Sloane,et al.  A new table of constant weight codes , 1990, IEEE Trans. Inf. Theory.

[30]  Gennian Ge,et al.  Generalized Steiner Triple Systems with Group Size g = 7, 8 , 2000, Ars Comb..

[31]  Patric R. J. Östergård,et al.  Ternary Constant Weight Codes , 2002, Electron. J. Comb..