Intracellular Electrochemical Sensing

[1]  Hidetoshi Kotera,et al.  SINC-seq: correlation of transient gene expressions between nucleus and cytoplasm reflects single-cell physiology , 2018, Genome Biology.

[2]  K. Ino,et al.  Evaluation of mRNA Localization Using Double Barrel Scanning Ion Conductance Microscopy. , 2016, ACS nano.

[3]  T. Reese,et al.  Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. , 1990, Biophysical journal.

[4]  K. Ino,et al.  Electrochemical Hydrogel Lithography of Calcium-Alginate Hydrogels for Cell Culture , 2016, Materials.

[5]  J. Ramón‐Azcón,et al.  An impedimetric immunosensor based on interdigitated microelectrodes (IDmicroE) for the determination of atrazine residues in food samples. , 2008, Biosensors & bioelectronics.

[6]  Hitoshi Shiku,et al.  Alginate gel microwell arrays using electrodeposition for three-dimensional cell culture. , 2013, Lab on a Chip.

[7]  H. Shiku,et al.  Scanning Probe Microscopy for Nanoscale Electrochemical Imaging. , 2017, Analytical chemistry.

[8]  F. Rawson,et al.  Electrochemical detection of intracellular and cell membrane redox systems in Saccharomyces cerevisiae , 2014, Scientific Reports.

[9]  K. Ino,et al.  Bioelectrochemical applications of microelectrode arrays in cell analysis and engineering , 2017 .

[10]  Jing Zhang,et al.  A ratiometric electrochemical biosensor for the exosomal microRNAs detection based on bipedal DNA walkers propelled by locked nucleic acid modified toehold mediate strand displacement reaction. , 2018, Biosensors & bioelectronics.

[11]  K. Mowry,et al.  Principles and roles of mRNA localization in animal development , 2012, Development.

[12]  Martin Dufva,et al.  Bioelectrochemical probing of intracellular redox processes in living yeast cells—application of redox polymer wiring in a microfluidic environment , 2013, Analytical and Bioanalytical Chemistry.

[13]  Michael V. Mirkin,et al.  Electrochemical attosyringe , 2007, Proceedings of the National Academy of Sciences.

[14]  Laurence Zitvogel,et al.  Exosomes: composition, biogenesis and function , 2002, Nature Reviews Immunology.

[15]  Jason J. Davis,et al.  Concentration-Normalized Electroanalytical Assaying of Exosomal Markers. , 2017, Analytical chemistry.

[16]  M. Ronaghi,et al.  Rapid and selective extraction, isolation, preconcentration, and quantitation of small RNAs from cell lysate using on-chip isotachophoresis. , 2009, Lab on a chip.

[17]  Andrew G. Ewing,et al.  Measuring synaptic vesicles using cellular electrochemistry and nanoscale molecular imaging , 2017 .

[18]  K. Martin,et al.  mRNA Localization: Gene Expression in the Spatial Dimension , 2009, Cell.

[19]  Angel Orte,et al.  Fluorescent nanoparticles for intracellular sensing: a review. , 2012, Analytica chimica acta.

[20]  Colette McDonagh,et al.  Intracellular sensing and cell diagnostics using fluorescent silica nanoparticles , 2012 .

[21]  K. Ino,et al.  Isolation and quantification of messenger RNA from tissue models by using a double-barrel carbon probe , 2013, Analytical and Bioanalytical Chemistry.

[22]  B. Cui,et al.  Iridium Oxide Nanotube Electrodes for Highly Sensitive and Prolonged Intracellular Measurement of Action Potentials , 2014, Nature Communications.

[23]  Qiang Zhang,et al.  Recent advances in the use of microfluidic technologies for single cell analysis. , 2017, The Analyst.

[24]  Lu Wen,et al.  Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas , 2016, Cell Research.

[25]  Tomoyuki Yasukawa,et al.  Topographic imaging of convoluted surface of live cells by scanning ion conductance microscopy in a standing approach mode. , 2010, Physical chemistry chemical physics : PCCP.

[26]  K. Ino,et al.  Continuous collection and simultaneous detection of picoliter volume of nucleic acid samples using a mille-feuille probe , 2017, Analytical and Bioanalytical Chemistry.

[27]  Shashi K Murthy,et al.  Microfluidic Sample Preparation for Single Cell Analysis. , 2016, Analytical chemistry.

[28]  David Klenerman,et al.  Electrochemical nanoprobes for single-cell analysis. , 2014, ACS nano.

[29]  Gregory F Payne,et al.  Redox-capacitor to connect electrochemistry to redox-biology. , 2014, The Analyst.

[30]  Tomoyuki Yasukawa,et al.  Measurement of gene expression from single adherent cells and spheroids collected using fast electrical lysis. , 2007, Analytical chemistry.

[31]  K. Ino,et al.  Electrochemicolor imaging of endogenous alkaline phosphatase and respiratory activities of mesenchymal stem cell aggregates in early-stage osteodifferentiation , 2018 .

[32]  H. Shiku,et al.  High Speed Scanning Ion Conductance Microscopy for Quantitative Analysis of Nanoscale Dynamics of Microvilli. , 2017, Analytical chemistry.

[33]  Molly M Stevens,et al.  Extracting the contents of living cells , 2017, Science.

[34]  Hongyuan Chen,et al.  Nanokit for single-cell electrochemical analyses , 2016, Proceedings of the National Academy of Sciences.

[35]  H. K. Wickramasinghe,et al.  Selective probing of mRNA expression levels within a living cell. , 2009, Applied physics letters.

[36]  Andrew G Ewing,et al.  Quantitative measurement of transmitters in individual vesicles in the cytoplasm of single cells with nanotip electrodes. , 2015, Angewandte Chemie.

[37]  Akos Vertes,et al.  Single-Cell Mass Spectrometry Approaches to Explore Cellular Heterogeneity. , 2018, Angewandte Chemie.

[38]  Gregory F Payne,et al.  Electrochemical Measurement of the β-Galactosidase Reporter from Live Cells: A Comparison to the Miller Assay. , 2016, ACS synthetic biology.

[39]  K. Ino,et al.  A new electrochemical assay method for gene expression using HeLa cells with a secreted alkaline phosphatase (SEAP) reporter system. , 2012, Biotechnology and bioengineering.

[40]  T. Matsue,et al.  Dielectrophoretic manipulation of a single chlorella cell with dual-microdisk electrode. , 2001, Bioelectrochemistry.

[41]  C. M. Li,et al.  RGD-peptide functionalized graphene biomimetic live-cell sensor for real-time detection of nitric oxide molecules. , 2012, ACS nano.

[42]  Sang-Joon Cho,et al.  Scanning ion conductance microscopy studies of amyloid fibrils at nanoscale. , 2012, Nanoscale.

[43]  K. Ino,et al.  Micro/nanoelectrochemical probe and chip devices for evaluation of three-dimensional cultured cells. , 2017, The Analyst.

[44]  Yu Qin,et al.  Analysis of Intracellular Glucose at Single Cells Using Electrochemiluminescence Imaging. , 2016, Analytical chemistry.

[45]  Kumi Y. Inoue,et al.  Electrochemicolor Imaging Using an LSI-Based Device for Multiplexed Cell Assays. , 2017, Analytical chemistry.

[46]  Damijan Miklavčič,et al.  Electroporation-based technologies for medicine: principles, applications, and challenges. , 2014, Annual review of biomedical engineering.

[47]  Ryan J. White,et al.  Advances and Perspectives in Chemical Imaging in Cellular Environments Using Electrochemical Methods , 2018, Chemosensors.

[48]  T. Matsue,et al.  Microring-ring electrode for manipulation of a single cell. , 1993, Biochimica et biophysica acta.

[49]  Amin Aalipour,et al.  Quantification of nanowire penetration into living cells , 2014, Nature Communications.

[50]  H. Shiku,et al.  3D electrochemical and ion current imaging using scanning electrochemical-scanning ion conductance microscopy. , 2017, Physical chemistry chemical physics : PCCP.

[51]  Nader Pourmand,et al.  Compartmental genomics in living cells revealed by single-cell nanobiopsy. , 2014, ACS nano.

[52]  Tomoyuki Yasukawa,et al.  Detection of hormone active chemicals using genetically engineered yeast cells and microfluidic devices with interdigitated array electrodes , 2009, Electrophoresis.

[53]  H. Shiku,et al.  Simultaneous noncontact topography and electrochemical imaging by SECM/SICM featuring ion current feedback regulation. , 2010, Journal of the American Chemical Society.

[54]  Hongyuan Chen,et al.  Switchable 'on-off-on' electrochemical technique for direct detection of survivin mRNA in living cells. , 2012, The Analyst.

[55]  P. Hansma,et al.  The scanning ion-conductance microscope. , 1989, Science.

[56]  K. Ino,et al.  Electrochemical monitoring of intracellular enzyme activity of single living mammalian cells by using a double-mediator system. , 2014, Analytica chimica acta.

[57]  Hongyuan Chen,et al.  C3N4 Nanosheet Modified Microwell Array with Enhanced Electrochemiluminescence for Total Analysis of Cholesterol at Single Cells. , 2017, Analytical chemistry.

[58]  M J Lab,et al.  Scanning ion conductance microscopy of living cells. , 1997, Biophysical journal.

[59]  Andreas Lesch,et al.  Electrochemical imaging of cells and tissues , 2018, Chemical science.

[60]  Rona S. Gertner,et al.  CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging. , 2017, Nature nanotechnology.

[61]  M J Lab,et al.  Cell volume measurement using scanning ion conductance microscopy. , 2000, Biophysical journal.

[62]  Mark Bachman,et al.  Fast electrical lysis of cells for capillary electrophoresis. , 2003, Analytical chemistry.

[63]  Muling Shi,et al.  Aptasensor with Expanded Nucleotide Using DNA Nanotetrahedra for Electrochemical Detection of Cancerous Exosomes. , 2017, ACS nano.

[64]  Hongying Liu,et al.  A review on nanomaterial-based electrochemical sensors for H2O2, H2S and NO inside cells or released by cells , 2017, Microchimica Acta.

[65]  K. Ino,et al.  Electrochemical detection for dynamic analyses of a redox component in droplets using a local redox cycling-based electrochemical (LRC-EC) chip device. , 2012, Chemical communications.

[66]  Han Sung‐Woong,et al.  Evaluation of DNA Transcription of Living Cell During Nanoneedle Insertion , 2016 .

[67]  Julia Gorelik,et al.  Dynamic assembly of surface structures in living cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[68]  Nader Pourmand,et al.  Single-cell nanobiopsy reveals compartmentalization of mRNAs within neuronal cells , 2018, The Journal of Biological Chemistry.

[69]  J. Vorholt,et al.  Single-Cell Mass Spectrometry of Metabolites Extracted from Live Cells by Fluidic Force Microscopy. , 2017, Analytical chemistry.

[70]  H. Shintaku,et al.  Isotachophoresis for fractionation and recovery of cytoplasmic RNA and nucleus from single cells , 2015, Electrophoresis.

[71]  Magnus Willander,et al.  Functionalised ZnO-nanorod-based selective electrochemical sensor for intracellular glucose. , 2010, Biosensors & bioelectronics.

[72]  Hui Jiang,et al.  Highly sensitive graphene-Pt nanocomposites amperometric biosensor and its application in living cell H2O2 detection. , 2014, Analytical chemistry.

[73]  H. Shiku,et al.  Multifunctional nanoprobes for nanoscale chemical imaging and localized chemical delivery at surfaces and interfaces. , 2011, Angewandte Chemie.

[74]  K. Ino,et al.  Electrochemical gene-function analysis for single cells with addressable microelectrode/microwell arrays. , 2009, Angewandte Chemie.

[75]  Jinsheng Zhao,et al.  The Mediated Electrochemical Method for Rapid Fermentation Ability Assessment , 2008 .

[76]  J. Justin Gooding,et al.  Electrochemical DNA Hybridization Biosensors , 2002 .

[77]  Rıfat Emrah Özel,et al.  Single Cell "Glucose Nanosensor" Verifies Elevated Glucose Levels in Individual Cancer Cells. , 2016, Nano letters.

[78]  K. Ino,et al.  Localized Gene Expression Analysis during Sprouting Angiogenesis in Mouse Embryoid Bodies Using a Double Barrel Carbon Probe. , 2016, Analytical chemistry.

[79]  Hongyuan Chen,et al.  Electrochemical Visualization of Intracellular Hydrogen Peroxide at Single Cells. , 2016, Analytical chemistry.

[80]  H. Kumar Wickramasinghe,et al.  Coaxial atomic force microscope probes for dielectrophoresis of DNA under different buffer conditions , 2017 .

[81]  K. Ino,et al.  Improving the electrochemical imaging sensitivity of scanning electrochemical microscopy-scanning ion conductance microscopy by using electrochemical Pt deposition. , 2015, Analytical chemistry.

[82]  Linwen Zhang,et al.  Einzelzell‐Massenspektrometrie zur Untersuchung zellulärer Heterogenität , 2018 .

[83]  Chikashi Nakamura,et al.  Development of a novel method to detect intrinsic mRNA in a living cell by using a molecular beacon-immobilized nanoneedle. , 2010, Biosensors & bioelectronics.

[84]  Hidetoshi Kotera,et al.  Integrating perfusable vascular networks with a three-dimensional tissue in a microfluidic device. , 2017, Integrative biology : quantitative biosciences from nano to macro.

[85]  Hidetoshi Kotera,et al.  On-chip separation and analysis of RNA and DNA from single cells. , 2014, Analytical chemistry.

[86]  Daniel St Johnston,et al.  Moving messages: the intracellular localization of mRNAs , 2005, Nature Reviews Molecular Cell Biology.

[87]  H. K. Wickramasinghe,et al.  Targeted messenger RNA profiling of transfected breast cancer gene in a living cell. , 2011, Analytical biochemistry.

[88]  P. Unwin Instrumentation and electroanalytical chemistry , 2003 .

[89]  Martin Hjort,et al.  Nondestructive nanostraw intracellular sampling for longitudinal cell monitoring , 2017, Proceedings of the National Academy of Sciences.

[90]  A. Ikai,et al.  Quantitative measurement of mRNA at different loci within an individual living cell. , 2004 .

[91]  Deyu Fang,et al.  A double-mediator based whole cell electrochemical biosensor for acute biotoxicity assessment of wastewater. , 2017, Talanta.

[92]  D. St Johnston Moving messages: the intracellular localization of mRNAs , 2005, Nature reviews. Molecular cell biology.

[93]  Jun‐Jie Zhu,et al.  Direct Electrochemiluminescence Imaging of a Single Cell on a Chitosan Film Modified Electrode. , 2018, Analytical chemistry.

[94]  T. Schäffer,et al.  Comparison of scanning ion conductance microscopy with atomic force microscopy for cell imaging. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[95]  Hironori Uehara,et al.  mRNA analysis of single living cells , 2003, Journal of nanobiotechnology.

[96]  Julia Gorelik,et al.  A novel Z-groove index characterizing myocardial surface structure. , 2006, Cardiovascular research.

[97]  Paolo Actis,et al.  Sampling from Single Cells , 2018 .

[98]  J. Oni,et al.  Dual microelectrodes for distance control and detection of nitric oxide from endothelial cells by means of scanning electrochemical microscope. , 2004, Analytical chemistry.

[99]  Hong Zhou,et al.  Integration of intracellular telomerase monitoring by electrochemiluminescence technology and targeted cancer therapy by reactive oxygen species† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc03772d , 2017, Chemical science.

[100]  Hongyuan Chen,et al.  Electrochemiluminescence imaging for parallel single-cell analysis of active membrane cholesterol. , 2015, Analytical chemistry.

[101]  Hitoshi Shiku,et al.  Electrochemical chip integrating scalable ring-ring electrode array to detect secreted alkaline phosphatase. , 2011, The Analyst.

[102]  J. Wegener,et al.  Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. , 2000, Experimental cell research.

[103]  Yuhong Cao,et al.  Nanostraw-electroporation system for highly efficient intracellular delivery and transfection. , 2013, ACS nano.

[104]  E. Betzig,et al.  Imaging live-cell dynamics and structure at the single-molecule level. , 2015, Molecular cell.

[105]  S. Bodovitz,et al.  Single cell analysis: the new frontier in 'omics'. , 2010, Trends in biotechnology.

[106]  Hongyuan Chen,et al.  Cholesterol Oxidase/Triton X-100 Parked Microelectrodes for the Detection of Cholesterol in Plasma Membrane at Single Cells. , 2018, Analytical Chemistry.

[107]  N. Melosh,et al.  Nanostraws for direct fluidic intracellular access. , 2012, Nano letters.

[108]  D. Ingber,et al.  Microfluidic organs-on-chips , 2014, Nature Biotechnology.

[109]  Jean-Marc Noël,et al.  Nanoelectrodes for determination of reactive oxygen and nitrogen species inside murine macrophages , 2012, Proceedings of the National Academy of Sciences.

[110]  Zhonghua Xue,et al.  Highly sensitive platinum nanoparticles-embedded porous graphene sensor for monitoring ROS from living cells upon oxidative stress , 2018, Sensors and Actuators B: Chemical.

[111]  K. Ino,et al.  Nanoscale imaging of an unlabeled secretory protein in living cells using scanning ion conductance microscopy. , 2015, Analytical chemistry.

[112]  Fei Li,et al.  Large-scale and non-contact surface topography measurement using scanning ion conductance microscopy and sub-aperture stitching technique , 2016 .

[113]  K. Ino,et al.  Influence of Tip Size on Single Yeast Cell Imaging Using Scanning Electrochemical Microscopy , 2011 .

[114]  K. Ino,et al.  Electrochemical printing of calcium alginate/gelatin hydrogel , 2018, Electrochimica Acta.

[115]  M.E. Valentinuzzi,et al.  Medium and interface components in impedance microbiology , 1999, IEEE Transactions on Biomedical Engineering.

[116]  Hitoshi Shiku,et al.  Local redox-cycling-based electrochemical chip device with deep microwells for evaluation of embryoid bodies. , 2012, Angewandte Chemie.

[117]  Shinya Yoshida,et al.  Densified electrochemical sensors based on local redox cycling between vertically separated electrodes in substrate generation/chip collection and extended feedback modes. , 2014, Analytical chemistry.

[118]  Abraham P. Lee,et al.  In situ mRNA isolation from a microfluidic single-cell array using an external AFM nanoprobe. , 2017, Lab on a chip.

[119]  L. Xing,et al.  mRNA Localization: An Orchestration of Assembly, Traffic and Synthesis , 2013, Traffic.

[120]  Kumi Y. Inoue,et al.  Electrochemical Imaging of Dopamine Release from Three-Dimensional-Cultured PC12 Cells Using Large-Scale Integration-Based Amperometric Sensors. , 2015, Analytical chemistry.

[121]  I. Willner,et al.  Chronopotentiometry and Faradaic impedance spectroscopy as signal transduction methods for the biocatalytic precipitation of an insoluble product on electrode supports: routes for enzyme sensors, immunosensors and DNA sensors. , 2001, Biosensors & bioelectronics.

[122]  François O. Laforge,et al.  Nanoelectrochemistry of mammalian cells , 2008, Proceedings of the National Academy of Sciences.