Melt-fluid interaction in the formation of peralkaline granite: Evidence from the Baiyinwula intrusion, Inner Mongolia, China

[1]  F. Huang,et al.  Barium isotope evidence for the generation of peralkaline granites from a fluid-metasomatized crustal source , 2022, Chemical Geology.

[2]  P. Manetti,et al.  From subduction to strike slip-related volcanism: insights from Sr, Nd, and Pb isotopes and geochronology of lavas from Sivas–Malatya region, Central Eastern Anatolia , 2021, International Journal of Earth Sciences.

[3]  Qingfei Wang,et al.  Late Carboniferous to Early Permian oceanic subduction in central Inner Mongolia and its correlation with the tectonic evolution of the southeastern Central Asian Orogenic Belt , 2020 .

[4]  T. Flood,et al.  The Orestes Melt Zone, McMurdo Dry Valleys, Antarctica: Spatially Distributed Melting Regimes in a Contact Melt Zone, with Implications for the Formation of Rapakivi and Albite Granites , 2019, Journal of Petrology.

[5]  P. Davidson,et al.  The enhanced element enrichment in the supercritical states of granite–pegmatite systems , 2019, Acta Geochimica.

[6]  M. Santosh,et al.  Carboniferous continental arc in the Hegenshan accretionary belt: Constrains from plutonic complex in central Inner Mongolia , 2018 .

[7]  P. Vermeesch IsoplotR: A free and open toolbox for geochronology , 2018, Geoscience Frontiers.

[8]  B. Scaillet,et al.  Phase Equilibria of Pantelleria Trachytes (Italy): Constraints on Pre‐eruptive Conditions and on the Metaluminous to Peralkaline Transition in Silicic Magmas , 2018 .

[9]  T. Peters,et al.  Zircon/fluid trace element partition coefficients measured by recrystallization of Mud Tank zircon at 1.5 GPa and 800-1000 °C , 2018 .

[10]  S. Self,et al.  Petrogenesis of the Peralkaline Ignimbrites of Terceira, Azores , 2017 .

[11]  M. Marks,et al.  A global review on agpaitic rocks , 2017 .

[12]  B. Windley,et al.  Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia , 2017, Earth-Science Reviews.

[13]  Tao Wang,et al.  Nd isotopic variation of Paleozoic-Mesozoic granitoids from the Da Hinggan Mountains and adjacent areas, NE Asia: Implications for the architecture and growth of continental crust , 2017 .

[14]  Xiaohui Zhang,et al.  Early Permian A-type granites from central Inner Mongolia, North China: Magmatic tracer of post-collisional tectonics and oceanic crustal recycling , 2015 .

[15]  B. Mysen Water-melt interaction in hydrous magmatic systems at high temperature and pressure , 2014, Progress in Earth and Planetary Science.

[16]  B. Kamber,et al.  Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India , 2014 .

[17]  E. Watson,et al.  Zircon saturation re-revisited , 2013 .

[18]  C. Manning,et al.  Zircon solubility and zirconium complexation in H2O+Na2O+SiO2±Al2O3 fluids at high pressure and temperature , 2012 .

[19]  Zongfeng Yang Combining Quantitative Textural and Geochemical Studies to Understand the Solidification Processes of a Granite Porphyry: Shanggusi, East Qinling, China , 2012 .

[20]  B. Mysen Silicate-COH melt and fluid structure, their physicochemical properties, and partitioning of nominally refractory oxides between melts and fluids , 2012 .

[21]  P. Davidson,et al.  Water in granite and pegmatite-forming melts , 2012 .

[22]  R. Macdonald,et al.  Evidence for extreme fractionation of peralkaline silicic magmas, the Boseti volcanic complex, Main Ethiopian Rift , 2012, Mineralogy and Petrology.

[23]  M. Marks,et al.  The Mineralogical Diversity of Alkaline Igneous Rocks: Critical Factors for the Transition from Miaskitic to Agpaitic Phase Assemblages , 2011 .

[24]  S. Wilde,et al.  Early Permian high-K calc-alkaline volcanic rocks from NW Inner Mongolia, North China: geochemistry, origin and tectonic implications , 2011, Journal of the Geological Society.

[25]  M. Reichow,et al.  Peralkaline granitoid magmatism in the Mongolian-Transbaikalian Belt: Evolution, petrogenesis and tectonic significance , 2009 .

[26]  R. Macdonald,et al.  Fractionation of Peralkaline Silicic Magmas: the Greater Olkaria Volcanic Complex, Kenya Rift Valley , 2009 .

[27]  D. Dingwell,et al.  Viscosity of magmatic liquids: A model , 2008 .

[28]  B. Bonin A-type granites and related rocks: Evolution of a concept, problems and prospects , 2007 .

[29]  Kevin M. Urbanczyk,et al.  Petrogenesis and tectonic setting of the peralkaline Pine Canyon caldera, Trans-Pecos Texas, USA , 2006 .

[30]  W. Heinrich,et al.  The transition from peraluminous to peralkaline granitic melts: Evidence from melt inclusions and accessory minerals , 2006 .

[31]  Robert F. Martin,et al.  A-type granites of crustal origin ultimately result from open-system fenitization-type reactions in an extensional environment , 2006 .

[32]  Alexander Yakubchuk,et al.  Architecture and mineral deposit settings of the Altaid orogenic collage: a revised model , 2004 .

[33]  J. Filiberto,et al.  The Origin and Evolution of Silica-saturated Alkalic Suites: an Experimental Study , 2004 .

[34]  H. Keppler,et al.  Viscosity of Fluids in Subduction Zones , 2004, Science.

[35]  A. Peccerillo,et al.  Relationships between mafic and peralkaline silicic magmatism in continental rift settings: A petrological, geochemical and isotopic study of the Gedemsa volcano, Central Ethiopian rift , 2003 .

[36]  R. Macdonald,et al.  Experimental Constraints on the Relationships between Peralkaline Rhyolites of the Kenya Rift Valley , 2003 .

[37]  Calvin G. Barnes,et al.  A Geochemical Classification for Granitic Rocks , 2001 .

[38]  C. Pin,et al.  First field-scale occurrence of Si-Al-Na–rich low-degree partial melts from the upper mantle , 2001 .

[39]  S. Wilde,et al.  Phanerozoic crustal growth: U–Pb and Sr–Nd isotopic evidence from the granites in northeastern China , 2000 .

[40]  H. Keppler,et al.  Complete miscibility between silicate melts and hydrous fluids in the upper mantle: experimental evidence and geochemical implications , 1999 .

[41]  G. Christidis Comparative Study of the Mobility of Major and Trace Elements During Alteration of an Andesite and a Rhyolite to Bentonite, in the Islands of Milos and Kimolos, Aegean, Greece , 1998 .

[42]  M. Reid,et al.  Genesis of silicic peralkaline volcanic rocks in an ocean island setting by crustal melting and open-system processes: Socorro Island, Mexico , 1997 .

[43]  R. Macdonald,et al.  Crustal Origin for Peralkaline Rhyolites from Kenya: Evidence from U-Series Disequilibria and Th-Isotopes , 1997 .

[44]  S. Taylor,et al.  The geochemical evolution of the continental crust , 1995 .

[45]  G. Eby,et al.  Geochronology and cooling history of the northern part of the Chilwa Alkaline Province, Malawi , 1995 .

[46]  Huang Huaizeng,et al.  The Permian alkaline granites in Central Inner Mongolia and their geodynamic significance , 1994 .

[47]  A. Şengör,et al.  Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia , 1993, Nature.

[48]  G. Eby Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications , 1992 .

[49]  D. Dingwell,et al.  A rheological investigation of vesicular rhyolite , 1992 .

[50]  J. Lowenstern,et al.  New data on magmatic H2O contents of pantellerites, with implications for petrogenesis and eruptive dynamics at Pantelleria , 1991 .

[51]  W. Hildreth,et al.  Modelling the petrogenesis of high Rb/Sr silicic magmas , 1991 .

[52]  G. Eby The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis , 1990 .

[53]  Robert F. Martin,et al.  The Mount Gharib A-type granite, Nubian Shield: petrogenesis and role of metasomatism at the source , 1990 .

[54]  R. Macdonald,et al.  Crustal Influences in the Petrogenesis of the Naivasha Basalt—Comendite Complex: Combined Trace Element and Sr-Nd-Pb Isotope Constraints , 1987 .

[55]  R. Macdonald,et al.  Geochemistry of High-silica Peralkaline Rhyolites, Naivasha, Kenya Rift Valley , 1987 .

[56]  J. Whalen,et al.  A-type granites: geochemical characteristics, discrimination and petrogenesis , 1987 .

[57]  R. W. Le Maitre,et al.  A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram , 1986 .

[58]  D. McKenzie The extraction of magma from the crust and mantle , 1985 .

[59]  T. M. Harrison,et al.  Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types , 1983 .

[60]  G. M. Young,et al.  Early Proterozoic climates and plate motions inferred from major element chemistry of lutites , 1982, Nature.

[61]  D. DePaolo Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization , 1981 .

[62]  J. Anderson,et al.  Geochemistry and evolution of the Wolf River Batholith, a late Precambrian Rapakivi Massif in North Wisconsin, U.S.A. , 1978 .

[63]  R. Macdonald,et al.  Fluorine and chlorine in peralkaline liquids and the need for magma generation in an open system , 1975, Mineralogical Magazine.

[64]  T. Irvine,et al.  A Guide to the Chemical Classification of the Common Volcanic Rocks , 1971 .

[65]  F. Wall,et al.  Alkaline-Silicate REE-HFSE Systems , 2022 .

[66]  Jiaming Zhang,et al.  A late Paleozoic extension basin constrained by sedimentology and geochronology in eastern Central Asia Orogenic Belt , 2021, Gondwana Research.

[67]  C. Harris,et al.  Petrogenesis of peralkaline granite dykes of the Straumsvola complex, western Dronning Maud Land, Antarctica , 2017, Contributions to Mineralogy and Petrology.

[68]  P. Davidson,et al.  Revisiting complete miscibility between silicate melts and hydrous fluids, and the extreme enrichment of some elements in the supercritical state — Consequences for the formation of pegmatites and ore deposits , 2016 .

[69]  Tao Wang,et al.  Permian alkaline granites in the Erenhot–Hegenshan belt, northern Inner Mongolia, China: Model of generation, time of emplacement and regional tectonic significance , 2015 .

[70]  Donna L. Whitney,et al.  Abbreviations for names of rock-forming minerals , 2010 .

[71]  Bin Chen,et al.  Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic , 2000, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[72]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[73]  C. Langmuir,et al.  A general mixing equation with applications to Icelandic basalts , 1978 .