RNA backbone: consensus all-angle conformers and modular string nomenclature (an RNA Ontology Consortium contribution).

A consensus classification and nomenclature are defined for RNA backbone structure using all of the backbone torsion angles. By a consensus of several independent analysis methods, 46 discrete conformers are identified as suitably clustered in a quality-filtered, multidimensional dihedral angle distribution. Most of these conformers represent identifiable features or roles within RNA structures. The conformers are given two-character names that reflect the seven-angle delta epsilon zeta alpha beta gamma delta combinations empirically found favorable for the sugar-to-sugar "suite" unit within which the angle correlations are strongest (e.g., 1a for A-form, 5z for the start of S-motifs). Since the half-nucleotides are specified by a number for delta epsilon zeta and a lowercase letter for alpha beta gamma delta, this modular system can also be parsed to describe traditional nucleotide units (e.g., a1) or the dinucleotides (e.g., a1a1) that are especially useful at the level of crystallographic map fitting. This nomenclature can also be written as a string with two-character suite names between the uppercase letters of the base sequence (N1aG1gN1aR1aA1cN1a for a GNRA tetraloop), facilitating bioinformatic comparisons. Cluster means, standard deviations, coordinates, and examples are made available, as well as the Suitename software that assigns suite conformer names and conformer match quality (suiteness) from atomic coordinates. The RNA Ontology Consortium will combine this new backbone system with others that define base pairs, base-stacking, and hydrogen-bond relationships to provide a full description of RNA structural motifs.

[1]  Erik Schultes,et al.  A parameterization of RNA sequence space , 1999, Complex..

[2]  M. Sundaralingam,et al.  Conformational analysis of the sugar ring in nucleosides and nucleotides. A new description using the concept of pseudorotation. , 1972, Journal of the American Chemical Society.

[3]  Wilma K. Olson How flexible is the furanose ring? 2. An updated potential energy estimate , 1982 .

[4]  Anna Marie Pyle,et al.  The identification of novel RNA structural motifs using COMPADRES: an automated approach to structural discovery. , 2004, Nucleic acids research.

[5]  H. Heus,et al.  Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops. , 1991, Science.

[6]  Jack Snoeyink,et al.  MolProbity: all-atom contacts and structure validation for proteins and nucleic acids , 2007, Nucleic Acids Res..

[7]  E. Westhof,et al.  A common motif organizes the structure of multi-helix loops in 16 S and 23 S ribosomal RNAs. , 1998, Journal of molecular biology.

[8]  Roland L. Dunbrack,et al.  Bayesian statistical analysis of protein side‐chain rotamer preferences , 1997, Protein science : a publication of the Protein Society.

[9]  A. R. Srinivasan,et al.  The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. , 1992, Biophysical journal.

[10]  A. R. Srinivasan,et al.  Geometric parameters in nucleic acids: Nitrogenous bases , 1996 .

[11]  A. Pyle,et al.  Stepping through an RNA structure: A novel approach to conformational analysis. , 1998, Journal of molecular biology.

[12]  G. Varani,et al.  Solution structure of an unusually stable RNA hairpin, 5GGAC(UUCG)GUCC , 1990, Nature.

[13]  P. Moore,et al.  The crystal structure of yeast phenylalanine tRNA at 1.93 A resolution: a classic structure revisited. , 2000, RNA.

[14]  M. Sundaralingam,et al.  Crystal and molecular structure of a naturally occurring dinucleoside monophosphate. Uridylyl-(3'-5')-adenosine hemihydrate. Conformational "rigidity" of the nucleotide unit and models for polynucleotide chain folding. , 1972, Biochemistry.

[15]  M. D. Newton,et al.  Seven basic conformations of nucleic acid structural units , 1973 .

[16]  T. Hahn International tables for crystallography , 2002 .

[17]  Zukang Feng,et al.  The Nucleic Acid Database. , 2002, Acta crystallographica. Section D, Biological crystallography.

[18]  M. Zalis,et al.  Visualizing and quantifying molecular goodness-of-fit: small-probe contact dots with explicit hydrogen atoms. , 1999, Journal of molecular biology.

[19]  Emmanuel Tannenbaum,et al.  Automated identification of RNA conformational motifs: theory and application to the HM LSU 23S rRNA. , 2003, Nucleic acids research.

[20]  F. Cordes,et al.  The structure of the HIV-1 Vpu ion channel: modelling and simulation studies. , 2001, Biochimica et biophysica acta.

[21]  D C Richardson,et al.  RNA backbone rotamers--finding your way in seven dimensions. , 2005, Biochemical Society transactions.

[22]  W. B. Arendall,et al.  RNA backbone is rotameric , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[23]  T. Steitz,et al.  Metals, Motifs, and Recognition in the Crystal Structure of a 5S rRNA Domain , 1997, Cell.

[24]  Sung-Hou Kim,et al.  Global mapping of nucleic acid conformational space: dinucleoside monophosphate conformations and transition pathways among conformational classes. , 2003, Nucleic acids research.

[25]  W. Wooster,et al.  Crystal structure of , 2005 .

[26]  Michael Sarver,et al.  FR 3 D : finding local and composite recurrent structural motifs in RNA 3 D structures , 2010 .

[27]  H. Berman,et al.  New parameters for the refinement of nucleic acid-containing structures. , 1996, Acta crystallographica. Section D, Biological crystallography.

[28]  B. Golden,et al.  Crystal structure of a phage Twort group I ribozyme–product complex , 2005, Nature Structural &Molecular Biology.

[29]  A. Ferré-D’Amaré,et al.  Structure of protein L7Ae bound to a K-turn derived from an archaeal box H/ACA sRNA at 1.8 A resolution. , 2004, Structure.

[30]  S. Scaringe,et al.  Crystal structures of r(GGUCACAGCCC)2. , 2003, Acta crystallographica. Section D, Biological crystallography.

[31]  F. Schluenzen,et al.  Structure of Functionally Activated Small Ribosomal Subunit , 2000 .

[32]  Helen M Berman,et al.  RNA conformational classes. , 2004, Nucleic acids research.

[33]  E. Westhof,et al.  Geometric nomenclature and classification of RNA base pairs. , 2001, RNA.

[34]  A. Serganov,et al.  The crystal structure of UUCG tetraloop. , 2000, Journal of molecular biology.

[35]  C R Woese,et al.  Architecture of ribosomal RNA: constraints on the sequence of "tetra-loops". , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[36]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[37]  Wilma K. Olson,et al.  Configurational Statistics of Polynucleotide Chains. An Updated Virtual Bond Model to Treat Effects of Base Stacking , 1980 .

[38]  D. Cremer,et al.  General definition of ring puckering coordinates , 1975 .

[39]  James W. Brown,et al.  The RNA Ontology Consortium: an open invitation to the RNA community. , 2006, RNA.

[40]  M. Sundaralingam,et al.  Conformational analysis of the sugar ring in nucleosides and nucleotides. Improved method for the interpretation of proton magnetic resonance coupling constants. , 1973, Journal of the American Chemical Society.

[41]  Johan Bijnensaa A Parametrization for , .

[42]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[43]  J. Richardson,et al.  The penultimate rotamer library , 2000, Proteins.

[44]  Craig L. Zirbel,et al.  FR3D: finding local and composite recurrent structural motifs in RNA 3D structures , 2007, Journal of mathematical biology.

[45]  Scott A. Strobel,et al.  Crystal structure of a self-splicing group I intron with both exons , 2004, Nature.

[46]  P. Hraber,et al.  A parameterization of RNA sequence space , 1999 .

[47]  A. Tannenbaum,et al.  Single nucleotide RNA choreography , 2006, Nucleic acids research.

[48]  F. Schluenzen,et al.  Structure of Functionally Activated Small Ribosomal Subunit at 3.3 Å Resolution , 2000, Cell.

[49]  H. Berman,et al.  Geometric Parameters in Nucleic Acids: Sugar and Phosphate Constituents , 1996 .

[50]  T. Steitz,et al.  The structure of the HIV-1 RRE high affinity rev binding site at 1.6 A resolution. , 2000, Journal of molecular biology.

[51]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[52]  A. Ferré-D’Amaré,et al.  Crystal structure of a hepatitis delta virus ribozyme , 1998, Nature.

[53]  G. Langlet,et al.  International Tables for Crystallography , 2002 .

[54]  Y. Chan,et al.  The common and the distinctive features of the bulged-G motif based on a 1.04 A resolution RNA structure. , 2003, Nucleic acids research.

[55]  M. Sundaralingam,et al.  Crystal structure of an RNA 16-mer duplex R(GCAGAGUUAAAUCUGC)2 with nonadjacent G(syn).A+(anti) mispairs. , 1999, Biochemistry.

[56]  John SantaLucia,et al.  Structures of two RNA octamers containing tandem G.A base pairs. , 2004, Acta crystallographica. Section D, Biological crystallography.

[57]  W. Goddard,et al.  Ab Initio Quantum Mechanical Study of the Structures and Energies for the Pseudorotation of 5‘-Dehydroxy Analogues of 2‘-Deoxyribose and Ribose Sugars , 1999 .

[58]  G. Varani,et al.  Structure of an unusually stable RNA hairpin. , 1991, Biochemistry.

[59]  G. Kokolakis Bayesian Statistical Analysis , 2010 .

[60]  G. Rose,et al.  RNABase: an annotated database of RNA structures , 2003, Nucleic Acids Res..

[61]  N. Seeman,et al.  Crystal structure of a naturally occurring dinucleoside phoaphate: uridylyl 3',5'-adenosine phosphate model for RNA chain folding. , 1972, Journal of molecular biology.

[62]  Bayesian Statistical Analysis , 1992 .