Defects in virgin and N + -implanted ZnO single crystals studied by positron annihilation, Hall effect, and deep-level transient spectroscopy

High-quality single crystals of ZnO in the as-grown and ${\mathrm{N}}^{+}$ ion-implanted states have been investigated using a combination of three experimental techniques---namely, positron lifetime/slow positron implantation spectroscopy accompanied by theoretical calculations of the positron lifetime for selected defects, temperature-dependent Hall (TDH) measurements, and deep level transient spectroscopy (DLTS). The positron lifetime in bulk ZnO is measured to be $(151\ifmmode\pm\else\textpm\fi{}2)\phantom{\rule{0.3em}{0ex}}\mathrm{ps}$ and that for positrons trapped in defects $(257\ifmmode\pm\else\textpm\fi{}2)\phantom{\rule{0.3em}{0ex}}\mathrm{ps}$. On the basis of theoretical calculations the latter is attributed to $\mathrm{Zn}+\mathrm{O}$ divacancies, existing in the sample in neutral charge state, and not to the Zn vacancy proposed in previous experimental work. Their concentration is estimated to be $3.7\ifmmode\times\else\texttimes\fi{}{10}^{17}\phantom{\rule{0.3em}{0ex}}{\mathrm{cm}}^{\ensuremath{-}3}$. From TDH measurements the existence of negatively charged intrinsic defects acting as compensating acceptors is concluded which are invisible to positrons---maybe interstitial oxygen. This view is supported from TDH results in combination with DLTS which revealed the creation of the defect $E1$, and an increase in concentration of the defect $E3$ after ${\mathrm{N}}^{+}$ ion implantation, and peculiarities in the observation of the defect $E4$.

[1]  Chen,et al.  Effect of thermochemical reduction on the electrical, optical-absorption, and positron-annihilation characteristics of ZnO crystals. , 1992, Physical review. B, Condensed matter.

[2]  Georg Kresse,et al.  Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements , 1994 .

[3]  Akira Ohtomo,et al.  Band gap engineering based on MgxZn1−xO and CdyZn1−yO ternary alloy films , 2001 .

[4]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[5]  H. Schmidt,et al.  Donor Levels in ZnO , 2006 .

[6]  K. Hagemark,et al.  Low temperature electrical properties of Zn-doped ZnO , 1975 .

[7]  W. E. Meyer,et al.  Fabrication and characterisation of NiO/ZnO structures , 2004 .

[8]  D. Look,et al.  Evidence of the Zn vacancy acting as the dominant acceptor in n-type ZnO. , 2003, Physical review letters.

[9]  Risto M. Nieminen,et al.  Theory of Positrons in Solids and on Solid Surfaces , 1994 .

[10]  S. Dutta,et al.  Defect dynamics in annealed ZnO by positron annihilation spectroscopy , 2005 .

[11]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[12]  David C. Look,et al.  Introduction and recovery of point defects in electron-irradiated ZnO , 2005 .

[13]  M. Elcombe,et al.  u parameters for the wurtzite structure of ZnS and ZnO using powder neutron diffraction , 1989 .

[14]  Z. Q. Chen,et al.  Evolution of voids in Al + -implanted ZnO probed by a slow positron beam , 2004 .

[15]  F. D. Auret,et al.  Electrical Characterization of Vapor-Phase-Grown Single-Crystal ZnO , 2002 .

[16]  P. Pramanik,et al.  Deposition of molybdenum chalcogenide thin films by the chemical deposition technique and the effect of bath parameters on these thin films , 1990 .

[17]  R. Nieminen,et al.  Real-space electronic-structure calculations: Combination of the finite-difference and conjugate-gradient methods. , 1995, Physical review. B, Condensed matter.

[18]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[19]  F. D. Auret,et al.  Electrical Characterization of 1.8 MeV Proton-Bombarded ZnO , 2001 .

[20]  David C. Look,et al.  Irradiation‐induced defects in ZnO studied by positron annihilation spectroscopy , 2004 .

[21]  B. Monemar,et al.  Multilayer model for Hall effect data analysis of semiconductor structures with step-changed conductivity , 2003 .

[22]  A. Uedono,et al.  Correlation between the photoluminescence lifetime and defect density in bulk and epitaxial ZnO , 2003 .

[23]  R. Nieminen,et al.  Momentum distributions of electron-positron pairs annihilating at vacancy clusters in Si , 1998 .

[24]  W. E. Meyer,et al.  Electrical characterisation of NiO/ZnO structures , 2004 .

[25]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[26]  P. Kiesel,et al.  Effects of an Electrically Conducting Layer at the Zinc Oxide Surface , 2005 .

[27]  D. Look,et al.  The Path To ZnO Devices: Donor and Acceptor Dynamics , 2003 .

[28]  Marius Grundmann,et al.  Optical and electrical properties of epitaxial (Mg,Cd)xZn1−xO, ZnO, and ZnO:(Ga,Al) thin films on c-plane sapphire grown by pulsed laser deposition , 2003 .

[29]  A. R. Hutson Hall Effect Studies of Doped Zinc Oxide Single Crystals , 1957 .

[30]  G. Brauer,et al.  A Magnetically Guided Slow Positron Beam for Defect Studies , 1995 .

[31]  V. A. Dravin,et al.  Proton implantation effects on electrical and recombination properties of undoped ZnO , 2003 .

[32]  Hideomi Koinuma,et al.  Defects in ZnO thin films grown on ScAlMgO4 substrates probed by a monoenergetic positron beam , 2003 .

[33]  Y. Shirai,et al.  Theoretical Calculations of Positron Lifetimes for Metal Oxides , 2004 .

[34]  T. Torsti,et al.  Gradient correction for positron states in solids. , 1995, Physical review. B, Condensed matter.

[35]  G. Ceder,et al.  First-principles study of native point defects in ZnO , 2000 .

[36]  A. Hausmann,et al.  Halleffekt und Leitfähigkeitsmessungen an Zinkoxid-Einkristallen mit Sauerstofflücken als Donatoren , 1975 .

[37]  Manninen,et al.  Screening of positrons in semiconductors and insulators. , 1989, Physical review. B, Condensed matter.

[38]  S. Myers,et al.  Quantitative comparisons of dissolved hydrogen density and the electrical and optical properties of ZnO , 2003 .

[39]  A. Zunger,et al.  Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO , 2001 .

[40]  A. Heinrich,et al.  Electrical properties and non‐stoichiometry in ZnO single crystals , 1981 .

[41]  Akira Ohtomo,et al.  MgxZn1−xO as a II–VI widegap semiconductor alloy , 1998 .

[42]  R. Nieminen,et al.  Electron-positron density-functional theory. , 1986, Physical review. B, Condensed matter.

[43]  D. C. Reynolds,et al.  Production and annealing of electron irradiation damage in ZnO , 1999 .

[44]  Peter Mascher,et al.  Characterization of Radiation- Induced Defects in ZnO Probed by Positron Annihilation Spectroscopy , 2001 .

[45]  T. Butz,et al.  Infrared dielectric functions and phonon modes of wurtzite MgxZn1−xO (x⩽0.2) , 2002 .

[46]  J. Zúñiga-Pérez,et al.  Zinc vacancies in the heteroepitaxy of ZnO on sapphire: Influence of the substrate orientation and layer thickness , 2005 .

[47]  R. Nieminen,et al.  CORRIGENDUM: Defect spectroscopy with positrons: a general calculational method , 1983 .

[48]  David C. Look,et al.  Recent Advances in ZnO Materials and Devices , 2001 .

[49]  S. Studenikin,et al.  Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis , 1998 .

[50]  V. Walle,et al.  Hydrogen as a cause of doping in zinc oxide , 2000 .

[51]  Evolution of high-dose implanted hydrogen in ZnO , 2005 .

[52]  Marius Grundmann,et al.  Dielectric functions (1 to 5 eV) of wurtzite MgXZn1 -XO (x≤0.29) thin films , 2003 .

[53]  Brauer,et al.  Evaluation of some basic positron-related characteristics of SiC. , 1996, Physical review. B, Condensed matter.

[54]  R. Krause-Rehberg,et al.  Positron Annihilation in Semiconductors , 1999 .