Molecular architecture of bacteriophage T4

In studying bacteriophage T4—one of the basic models of molecular biology for several decades—there has come a Renaissance, and this virus is now actively used as object of structural biology. The structures of six proteins of the phage particle have recently been determined at atomic resolution by X-ray crystallography. Three-dimensional reconstruction of the infection device—one of the most complex multiprotein components—has been developed on the basis of cryo-electron microscopy images. The further study of bacteriophage T4 structure will allow a better understanding of the regulation of protein folding, assembly of biological structures, and also mechanisms of functioning of the complex biological molecular machines.

[1]  D. Eisenberg,et al.  Structures of the two 3D domain‐swapped RNase A trimers , 2002, Protein science : a publication of the Protein Society.

[2]  E. Beckmann,et al.  Structure of the 13-fold symmetric portal protein of bacteriophage SPP1 , 1999, Nature Structural Biology.

[3]  M. Rossmann,et al.  The structure of bacteriophage T4 gene product 9: the trigger for tail contraction. , 1999, Structure.

[4]  T. Bickle,et al.  The nucleotide sequence of gene 21 of bacteriophage T4 coding for the prohead protease. , 1986, Gene.

[5]  E. Kellenberger,et al.  Disassembly of T-even bacteriophage into structural parts and subunits. , 1969, Journal of molecular biology.

[6]  W. Wood,et al.  Bacteriophage T4 whiskers: a rudimentary environment-sensing device. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[7]  V. Rao,et al.  Functional analysis of the DNA-packaging/terminase protein gp17 from bacteriophage T4. , 1998, Journal of molecular biology.

[8]  L. Black,et al.  Purification and Characterization of the Small Subunit of Phage T4 Terminase, gp16, Required for DNA Packaging* , 1997, The Journal of Biological Chemistry.

[9]  J. King,et al.  There's a right way and a wrong way: in vivo and in vitro folding, misfolding and subunit assembly of the P22 tailspike. , 1999, Structure.

[10]  C. Georgopoulos,et al.  Genetic analysis of bacteriophage-encoded cochaperonins. , 2000, Annual review of genetics.

[11]  John E. Johnson,et al.  Icosahedral RNA virus structure. , 1989, Annual review of biochemistry.

[12]  A. Fersht,et al.  Conversion of two-state to multi-state folding kinetics on fusion of two protein foldons. , 2000, Journal of molecular biology.

[13]  M. F. Moody Sheath of bacteriophage T4. 3. Contraction mechanism deduced from partially contracted sheaths. , 1973, Journal of molecular biology.

[14]  R. M. Burnett,et al.  The refined crystal structure of hexon, the major coat protein of adenovirus type 2, at 2.9 A resolution. , 1994, Journal of molecular biology.

[15]  Fumio Arisaka,et al.  Three-dimensional structure of bacteriophage T4 baseplate , 2003, Nature Structural Biology.

[16]  J. King,et al.  Single amino acid substitutions influencing the folding pathway of the phage P22 tail spike endorhamnosidase. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[17]  A R Panchenko,et al.  Foldons, protein structural modules, and exons. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[18]  L. Black,et al.  DNA requirements in vivo for phage T4 packaging. , 1998, Virology.

[19]  F. Eiserling,et al.  The transformation of tau particles into T4 heads. II. Transformations of the surface lattice and related observations on form determination. , 1974, Journal of supramolecular structure.

[20]  D. Karamata,et al.  Mechanism of the long tail-fiber deployment of bacteriophages T-even and its role in adsorption, infection and sedimentation. , 1996, Biophysical chemistry.

[21]  C. Georgopoulos,et al.  The ins and outs of a molecular chaperone machine. , 1998, Trends in biochemical sciences.

[22]  Michael G Rossmann,et al.  Molecular architecture of the prolate head of bacteriophage T4. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[23]  W. Wood Bacteriophage T4 Morphogenesis as a Model for Assembly of Subcellular Structure , 1980, The Quarterly Review of Biology.

[24]  A. Klug,et al.  Three-dimensional image reconstructions of the contractile tail of T4 bacteriophage. , 1975, Journal of molecular biology.

[25]  R. Haselkorn,et al.  Product of T4 gene 12. , 1972, Journal of molecular biology.

[26]  C. Sander,et al.  Protein structure comparison by alignment of distance matrices. , 1993, Journal of molecular biology.

[27]  P. Boulanger,et al.  Channeling phage DNA through membranes: from in vivo to in vitro. , 2003, Research in microbiology.

[28]  N. Watts,et al.  Structure of the bacteriophage T4 baseplate as determined by chemical cross-linking , 1990, Journal of virology.

[29]  M. Yanagida,et al.  Binding of the structural protein soc to the head shell of bacteriophage T4. , 1978, Journal of molecular biology.

[30]  D. Curiel,et al.  Genetic Targeting of an Adenovirus Vector via Replacement of the Fiber Protein with the Phage T4 Fibritin , 2001, Journal of Virology.

[31]  Fumio Arisaka,et al.  Bacteriophage T4 Genome , 2003, Microbiology and Molecular Biology Reviews.

[32]  R. Kammerer,et al.  Stabilization of short collagen-like triple helices by protein engineering. , 2001, Journal of molecular biology.

[33]  V. Rao,et al.  Biochemical Characterization of an ATPase Activity Associated with the Large Packaging Subunit gp17 from Bacteriophage T4* , 2000, The Journal of Biological Chemistry.

[34]  S. Kanamaru,et al.  P15 and P3, the Tail Completion Proteins of Bacteriophage T4, Both Form Hexameric Rings , 2003, Journal of bacteriology.

[35]  D. J. De Rosier,et al.  Reconstruction of Three Dimensional Structures from Electron Micrographs , 1968, Nature.

[36]  T. Bickle,et al.  Gene 67, a new, essential bacteriophage T4 head gene codes for a prehead core component, PIP. I. Genetic mapping and DNA sequence. , 1982, Journal of molecular biology.

[37]  U. K. Laemmli,et al.  Form-determining function of the genes required for the assembly of the head of bacteriophage T4. , 1970, Journal of molecular biology.

[38]  S. Kanamaru,et al.  The C-Terminal Fragment of the Precursor Tail Lysozyme of Bacteriophage T4 Stays as a Structural Component of the Baseplate after Cleavage , 1999, Journal of bacteriology.

[39]  T S Baker,et al.  The structure of isometric capsids of bacteriophage T4. , 2001, Virology.

[40]  A. Steven,et al.  Capsid fine structure of T-even bacteriophages. Binding and localization of two dispensable capsid proteins into the P23* surface lattice. , 1977, Journal of molecular biology.

[41]  J. King,et al.  Genetic control of bacteriophage T4 baseplate morphogenesis. II. Mutants unable to form the central part of the baseplate. , 1975, Journal of molecular biology.

[42]  M. Rossmann,et al.  Structure and location of gene product 8 in the bacteriophage T4 baseplate. , 2003, Journal of molecular biology.

[43]  S. Miller,et al.  Crystal structure of a heat and protease-stable part of the bacteriophage T4 short tail fibre. , 2001, Journal of molecular biology.

[44]  Marc C. Morais,et al.  Structure of the bacteriophage φ29 DNA packaging motor , 2000, Nature.

[45]  L. Mcnicol,et al.  A mutation which bypasses the requirement for p24 in bacteriophage T4 capsid morphogenesis. , 1977, Journal of molecular biology.

[46]  F. Eiserling,et al.  Potential length determiner and DNA injection protein is extruded from bacteriophage T4 tail tubes in vitro. , 1986, Virology.

[47]  J. King,et al.  Genetic control of bacteriophage T4 baseplate morphogenesis. III. Formation of the central plug and overall assembly pathway. , 1975, Journal of molecular biology.

[48]  S. Brenner,et al.  Structural components of bacteriophage , 1959 .

[49]  E. Terzaghi,et al.  The role of the collar/whisker complex in bacteriophage T4D tail fiber attachment. , 1979, Journal of molecular biology.

[50]  P. Leiman,et al.  Stoichiometry and inter-subunit interaction of the wedge initiation complex, gp10-gp11, of bacteriophage T4. , 2000, Biochimica et biophysica acta.

[51]  R. Crowther Mutants of bacteriophage T4 that produce infective fibreless particles. , 1980, Journal of Molecular Biology.

[52]  R. Hendrix,et al.  Symmetry mismatch and DNA packaging in large bacteriophages. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[53]  V. Kryukov,et al.  The nucleotide sequence of the region of bacteriophage T4 inh(lip)-hoc genes. , 1990, Nucleic Acids Research.

[54]  R A Crowther,et al.  Molecular reorganization in the hexagon to star transition of the baseplate of bacteriophage T4. , 1977, Journal of molecular biology.

[55]  M. A. Lauffer,et al.  FUNCTIONS AND PROPERTIES RELATED TO THE TAIL FIBERS OF BACTERIOPHAGE T4. , 1965, Virology.

[56]  M. G. Rossmann,et al.  Structure and morphogenesis of bacteriophage T4 , 2003, Cellular and Molecular Life Sciences CMLS.

[57]  T Lane,et al.  Genetic control of capsid length in bacteriophage T4. VII. A model of length regulation based on DNA size. , 1990, Journal of structural biology.

[58]  C. Chothia,et al.  Protein architecture: New superfamilies , 1992, Current Biology.

[59]  J. Engel,et al.  Design and crystal structure of bacteriophage T4 mini-fibritin NCCF. , 2004, Journal of molecular biology.

[60]  J. Sodroski,et al.  Highly Stable Trimers Formed by Human Immunodeficiency Virus Type 1 Envelope Glycoproteins Fused with the Trimeric Motif of T4 Bacteriophage Fibritin , 2002, Journal of Virology.

[61]  Alasdair C. Steven,et al.  Dynamics of herpes simplex virus capsid maturation visualized by time-lapse cryo-electron microscopy , 2003, Nature Structural Biology.

[62]  J. King,et al.  Bacteriophage T4 tail assembly: four steps in core formation. , 1971, Journal of molecular biology.

[63]  R. Kammerer,et al.  Collagen stabilization at atomic level: crystal structure of designed (GlyProPro)10foldon. , 2003, Structure.

[64]  C. Steinberg,et al.  Gene 24-controlled osmotic shock resistance in bacteriophage T4: probable multiple gene functions , 1979, Journal of virology.

[65]  I. Serysheva,et al.  On the presence of guanosine phosphate in the tail of bacteriophage T4. , 1984, Journal of molecular biology.

[66]  J. Carrascosa,et al.  Polymerization of bacteriophage T4 tail sheath protein mutants truncated at the C-termini. , 1999, Journal of structural biology.

[67]  M. Showe,et al.  Isolation and characterization of bacteriophage T4 mutant preheads , 1978, Journal of virology.

[68]  Timothy S Baker,et al.  The structure and evolution of the major capsid protein of a large, lipid-containing DNA virus , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[69]  J. King,et al.  Genetic control of bacteriophage T4 baseplate morphogenesis. I. Sequential assembly of the major precursor, in vivo and in vitro. , 1975, Journal of molecular biology.

[70]  V. Mesyanzhinov,et al.  The carboxy-terminal domain initiates trimerization of bacteriophage T4 fibritin. , 1999, Biochemistry. Biokhimiia.

[71]  N. Malys,et al.  A bipartite bacteriophage T4 SOC and HOC randomized peptide display library: detection and analysis of phage T4 terminase (gp17) and late sigma factor (gp55) interaction. , 2002, Journal of molecular biology.

[72]  Fumio Arisaka,et al.  The bacteriophage T4 DNA injection machine. , 2004, Current opinion in structural biology.

[73]  S. Steinbacher,et al.  Crystal structure of P22 tailspike protein: interdigitated subunits in a thermostable trimer. , 1994, Science.

[74]  Mark J van Raaij,et al.  The structure of the receptor-binding domain of the bacteriophage T4 short tail fibre reveals a knitted trimeric metal-binding fold. , 2003, Journal of molecular biology.

[75]  Anna Mitraki,et al.  A triple β-spiral in the adenovirus fibre shaft reveals a new structural motif for a fibrous protein , 1999, Nature.

[76]  F. Arisaka,et al.  Isolation and characterization of the bacteriophage T4 tail-associated lysozyme , 1985, Journal of virology.

[77]  D A Parry,et al.  Alpha-helical coiled coils: more facts and better predictions. , 1994, Science.

[78]  L. Black,et al.  Head morphogenesis of bacteriophage T4. II. The role of gene 40 in initiating prehead assembly. , 1978, Virology.

[79]  John E. Johnson,et al.  Topologically linked protein rings in the bacteriophage HK97 capsid. , 2000, Science.

[80]  Fumio Arisaka,et al.  Structure of the cell-puncturing device of bacteriophage T4 , 2002, Nature.

[81]  Stephen D Fuller,et al.  Low pH induces swiveling of the glycoprotein heterodimers in the Semliki forest virus spike complex , 1995, Cell.

[82]  W. Wood,et al.  Attachment of tail fibers in bacteriophage T4 assembly. Purification, properties, and site of action of the accessory protein coded by gene 63. , 1978, The Journal of biological chemistry.

[83]  E. Kellenberger,et al.  ON THE FINE STRUCTURE OF NORMAL AND "POLYMERIZED" TAIL SHEATH OF PHAGE T4. , 1964, Journal of ultrastructure research.

[84]  L. E. Donate,et al.  Production of λ-φ29 phage chimeras , 1990 .

[85]  J. Hainfeld,et al.  Localization of the proteins gp7, gp8 and gp10 in the bacteriophage T4 baseplate with colloidal gold: F(ab)2 and undecagold: Fab' conjugates. , 1990, Journal of molecular biology.

[86]  M G Rossmann,et al.  Structure of bacteriophage T4 fibritin M: a troublesome packing arrangement. , 1998, Acta crystallographica. Section D, Biological crystallography.

[87]  J. Drake,et al.  Molecular Biology of Bacteriophage T4 , 1994 .

[88]  C. Georgopoulos,et al.  Bacteriophage T4 mutants which propagate on E. coli K12 but not on E. coli B , 1977, Experientia.

[89]  M Go,et al.  Protein anatomy: functional roles of barnase module. , 1993, The Journal of biological chemistry.

[90]  B. Matthews,et al.  A covalent enzyme-substrate intermediate with saccharide distortion in a mutant T4 lysozyme. , 1993, Science.

[91]  E. Kellenberger DNA viruses: cooperativity and regulation through conformational changes as features of phage assembly. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[92]  V. Mesyanzhinov,et al.  Domain organization, folding and stability of bacteriophage T4 fibritin, a segmented coiled-coil protein. , 2002, European Journal of Biochemistry.

[93]  Folding and function of repetitive structure in the homotrimeric phage P22 tailspike protein. , 1998, Journal of structural biology.

[94]  A. Klug,et al.  Physical principles in the construction of regular viruses. , 1962, Cold Spring Harbor symposia on quantitative biology.

[95]  V. Mesyanzhinov,et al.  The wac gene product of bacteriophage T4 contains coiled-coil structural patterns. , 1991, Journal of biomolecular structure & dynamics.

[96]  A. Lustig,et al.  Properties of Bacteriophage T4 Baseplate Protein Encoded by Gene 8 , 2001, Biochemistry (Moscow).

[97]  A. Lustig,et al.  Fibritin encoded by bacteriophage T4 gene wac has a parallel triple-stranded alpha-helical coiled-coil structure. , 1994, Journal of molecular biology.

[98]  D. Curiel,et al.  Adenovirus targeting to c-erbB-2 oncoprotein by single-chain antibody fused to trimeric form of adenovirus receptor ectodomain. , 2002, Cancer research.

[99]  E. Marusich,et al.  A proposed structure of bacteriophage T4 gene product 22--a major prohead scaffolding core protein. , 1990, Journal of structural biology.

[100]  M. Shneider,et al.  Transformation of a Fragment of β-Structural Bacteriophage T4 Adhesin to Stable α-Helical Trimer , 2000, Biochemistry (Moscow).

[101]  F. Eiserling,et al.  Studies on the structure, protein composition and aseembly of the neck of bacteriophage T4. , 1977, Journal of molecular biology.

[102]  B L Trus,et al.  The short tail-fiber of bacteriophage T4: molecular structure and a mechanism for its conformational transition. , 1993, Virology.

[103]  A. Steven,et al.  Engineering trimeric fibrous proteins based on bacteriophage T4 adhesins. , 1998, Protein engineering.

[104]  E. Kellenberger,et al.  Form determination of the heads of bacteriophages. , 1990, European journal of biochemistry.

[105]  J. Dubochet,et al.  Length and shape variants of the bacteriophage T4 head: mutations in the scaffolding core genes 68 and 22 , 1988, Journal of virology.

[106]  P. Ferguson,et al.  Pulse-chase analysis of the in vivo assembly of the bacteriophage T4 tail. , 2000, Journal of molecular biology.

[107]  W. Wood,et al.  The sequence of gene product interaction in bacteriophage T4 tail core assembly. , 1971, Journal of molecular biology.

[108]  M. Chidambaram,et al.  Isolation and characterization of precursors in bacteriophage T4 baseplate assembly. II. Purification of the protein products of genes 10 and 11 and the in vitro formation of the P(10/11) complex. , 1983, Journal of molecular biology.

[109]  J. R. Paulson,et al.  Head length determination in bacteriophage T4: the role of the core protein P22. , 1976, Journal of molecular biology.

[110]  L. Black,et al.  Cloning, overexpression and purification of the terminase proteins gp16 and gp17 of bacteriophage T4. Construction of a defined in-vitro DNA packaging system using purified terminase proteins. , 1988, Journal of molecular biology.

[111]  E. Young,et al.  Nucleotide sequence of bacteriophage T4 gene 23 and the amino acid sequence of its product. , 1984, Journal of molecular biology.

[112]  J. Deisenhofer,et al.  Structural Adaptations in the Specialized Bacteriophage T4 Co-Chaperonin Gp31 Expand the Size of the Anfinsen Cage , 1997, Cell.

[113]  J. Conway,et al.  Stoichiometry and domainal organization of the long tail-fiber of bacteriophage T4: a hinged viral adhesin. , 1996, Journal of molecular biology.

[114]  T. Baker,et al.  Adding the Third Dimension to Virus Life Cycles: Three-Dimensional Reconstruction of Icosahedral Viruses from Cryo-Electron Micrographs , 2000, Microbiology and Molecular Biology Reviews.

[115]  A. Engel,et al.  A proposed structure of the prolate phage T4 prehead core. An electron microscopic study. , 1982, Journal of ultrastructure research.

[116]  David Eisenberg,et al.  3D domain swapping: As domains continue to swap , 2002, Protein science : a publication of the Protein Society.

[117]  B L Trus,et al.  Molecular architecture of bacteriophage T4 capsid: vertex structure and bimodal binding of the stabilizing accessory protein, Soc. , 2000, Virology.

[118]  F. Eiserling,et al.  Genetic Control of Capsid Length in Bacteriophage T4 I. Isolation and Preliminary Description of Four New Mutants , 1973, Journal of virology.

[119]  M G Rossmann,et al.  Structure of bacteriophage T4 fibritin: a segmented coiled coil and the role of the C-terminal domain. , 1997, Structure.

[120]  M. Rossmann,et al.  Preliminary crystallographic studies of bacteriophage T4 fibritin confirm a trimeric coiled-coil structure. , 1996, Virology.

[121]  F. Eiserling,et al.  Tail length determination in bacteriophage T4. , 1994, Virology.

[122]  B. Matthews,et al.  The three dimensional structure of the lysozyme from bacteriophage T4. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[123]  R. Kammerer,et al.  Nucleation and propagation of the collagen triple helix in single-chain and trimerized peptides: transition from third to first order kinetics. , 2002, Journal of molecular biology.

[124]  L. Makowski,et al.  X-ray diffraction study of tail-tubes from bacteriophage T2L. , 1981, Journal of molecular biology.

[125]  T. Bickle,et al.  Gene 67, a new, essential bacteriophage T4 head gene codes for a prehead core component, PIP. II. The construction in vitro of unconditionally lethal mutants and their maintenance. , 1982, Journal of molecular biology.

[126]  M. Showe,et al.  Bacteriophage T4 prehead proteinase. I. Purification and properties of a bacteriophage enzyme which cleaves the capsid precursor proteins. , 1976, Journal of molecular biology.

[127]  Y. Wada,et al.  "Module" substitution in hemoglobin subunits. Preparation and characterization of a "chimera beta alpha-subunit". , 1994, The Journal of biological chemistry.