Somatic genome editing with the RCAS-TVA-CRISPR-Cas9 system for precision tumor modeling

[1]  A. Drilon,et al.  Somatic chromosomal engineering identifies BCAN-NTRK1 as a potent glioma driver and therapeutic target , 2017, Nature Communications.

[2]  A. Iafrate,et al.  Clinical and radiographic response following targeting of BCAN-NTRK1 fusion in glioneuronal tumor , 2017, npj Precision Oncology.

[3]  Anirvan Ghosh,et al.  Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes , 2017, Nature Biotechnology.

[4]  R. Verhaak,et al.  GlioVis data portal for visualization and analysis of brain tumor expression datasets. , 2017, Neuro-oncology.

[5]  Prashant Mali,et al.  A multifunctional AAV–CRISPR–Cas9 and its host response , 2016, Nature Methods.

[6]  O. Fernandez-Capetillo,et al.  A Genome-wide CRISPR Screen Identifies CDC25A as a Determinant of Sensitivity to ATR Inhibitors. , 2016, Molecular cell.

[7]  A. Sartore-Bianchi,et al.  NTRK gene fusions as novel targets of cancer therapy across multiple tumour types , 2016, ESMO Open.

[8]  F. C. Bennett,et al.  New tools for studying microglia in the mouse and human CNS , 2016, Proceedings of the National Academy of Sciences.

[9]  Steven J. M. Jones,et al.  Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma , 2016, Cell.

[10]  Liliana Goumnerova,et al.  MYB-QKI rearrangements in Angiocentric Glioma drive tumorigenicity through a tripartite mechanism , 2016, Nature Genetics.

[11]  J. Cigudosa,et al.  Truncated RUNX1 protein generated by a novel t(1;21)(p32;q22) chromosomal translocation impairs the proliferation and differentiation of human hematopoietic progenitors , 2016, Oncogene.

[12]  Mathias J Friedrich,et al.  CRISPR/Cas9 somatic multiplex-mutagenesis for high-throughput functional cancer genomics in mice , 2015, Proceedings of the National Academy of Sciences.

[13]  A. Becker,et al.  Tracking and transforming neocortical progenitors by CRISPR/Cas9 gene targeting and piggyBac transposase lineage labeling , 2015, Development.

[14]  Euiseok J. Kim,et al.  Adult Lineage-Restricted CNS Progenitors Specify Distinct Glioblastoma Subtypes. , 2015, Cancer cell.

[15]  Joana A. Vidigal,et al.  Rapid and efficient one-step generation of paired gRNA CRISPR-Cas9 libraries , 2015, Nature Communications.

[16]  Dian Yang,et al.  Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing , 2015, Genes & development.

[17]  Volker Hovestadt,et al.  Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling , 2015, Nature Communications.

[18]  Hao Yin,et al.  Precision cancer mouse models through genome editing with CRISPR-Cas9 , 2015, Genome Medicine.

[19]  Zhiping Weng,et al.  Adenovirus-Mediated Somatic Genome Editing of Pten by CRISPR/Cas9 in Mouse Liver in Spite of Cas9-Specific Immune Responses. , 2015, Human gene therapy.

[20]  David G. Pisano,et al.  iMSRC: converting a standard automated microscope into an intelligent screening platform , 2015, Scientific Reports.

[21]  Hans Clevers,et al.  Sequential cancer mutations in cultured human intestinal stem cells , 2015, Nature.

[22]  Takanori Kanai,et al.  Modeling colorectal cancer using CRISPR-Cas9–mediated engineering of human intestinal organoids , 2015, Nature Medicine.

[23]  Lukas E Dow,et al.  Inducible in vivo genome editing with CRISPR/Cas9 , 2015, Nature Biotechnology.

[24]  R. Doebele,et al.  TRKing down an old oncogene in a new era of targeted therapy. , 2015, Cancer discovery.

[25]  Elif Karaca,et al.  Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology. , 2014, Cell reports.

[26]  B. Lewis,et al.  Using the RCAS-TVA system to model human cancer in mice. , 2014, Cold Spring Harbor protocols.

[27]  Joana A. Vidigal,et al.  In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system , 2014, Nature.

[28]  Chris Wiggins,et al.  Pegasus: a comprehensive annotation and prediction tool for detection of driver gene fusions in cancer , 2014, BMC Systems Biology.

[29]  Robert Langer,et al.  CRISPR-Cas9 Knockin Mice for Genome Editing and Cancer Modeling , 2014, Cell.

[30]  Hao Yin,et al.  CRISPR-mediated direct mutation of cancer genes in the mouse liver , 2014, Nature.

[31]  Neville E. Sanjana,et al.  Improved vectors and genome-wide libraries for CRISPR screening , 2014, Nature Methods.

[32]  Satoshi O. Suzuki,et al.  Epithelioid glioblastoma arising from pleomorphic xanthoastrocytoma with the BRAF V600E mutation , 2014, Brain Tumor Pathology.

[33]  J. Cigudosa,et al.  Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR–Cas9 system , 2014, Nature Communications.

[34]  Jinkuk Kim,et al.  NTRK1 Fusion in Glioblastoma Multiforme , 2014, PloS one.

[35]  Arie Perry,et al.  BRAF-V600E mutation in pediatric and adult glioblastoma. , 2014, Neuro-oncology.

[36]  S. Gabriel,et al.  Discovery and saturation analysis of cancer genes across 21 tumor types , 2014, Nature.

[37]  Yilong Li,et al.  Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library , 2013, Nature Biotechnology.

[38]  N. Shah,et al.  Exploration of the gene fusion landscape of glioblastoma using transcriptome sequencing and copy number data , 2013, BMC Genomics.

[39]  D. Haussler,et al.  The Somatic Genomic Landscape of Glioblastoma , 2013, Cell.

[40]  D. Aisner,et al.  Epithelioid GBMs Show a High Percentage of BRAF V600E Mutation , 2013, The American journal of surgical pathology.

[41]  K. Kinzler,et al.  Cancer Genome Landscapes , 2013, Science.

[42]  Zhiguo Zhao,et al.  Cell of Origin Determines Tumor Phenotype in an Oncogenic Ras/p53 Knockout Transgenic Model of High-Grade Glioma , 2012, Journal of neuropathology and experimental neurology.

[43]  Michael Zouberakis,et al.  CreZOO—the European virtual repository of Cre and other targeted conditional driver strains , 2012, Database J. Biol. Databases Curation.

[44]  D. Saur,et al.  Production of avian retroviruses and tissue-specific somatic retroviral gene transfer in vivo using the RCAS/TVA system , 2012, Nature Protocols.

[45]  D. Smedley,et al.  Cre recombinase resources for conditional mouse mutagenesis. , 2011, Methods.

[46]  C. Brennan,et al.  Loss of ATM/Chk2/p53 pathway components accelerates tumor development and contributes to radiation resistance in gliomas. , 2010, Cancer cell.

[47]  Ji-Eun Lee,et al.  Histone H3K27 methyltransferase Ezh2 represses Wnt genes to facilitate adipogenesis , 2010, Proceedings of the National Academy of Sciences.

[48]  S. Brandner,et al.  Activated BRAF induces gliomas in mice when combined with Ink4a/Arf loss or Akt activation , 2010, Oncogene.

[49]  Peter Dalgaard,et al.  R Development Core Team (2010): R: A language and environment for statistical computing , 2010 .

[50]  E. Holland,et al.  Modeling Adult Gliomas Using RCAS/t-va Technology. , 2009, Translational oncology.

[51]  D. Saur,et al.  A Cre-loxP-based mouse model for conditional somatic gene expression and knockdown in vivo by using avian retroviral vectors , 2008, Proceedings of the National Academy of Sciences.

[52]  A. Bhandoola,et al.  Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. , 2007, Cell stem cell.

[53]  M. Rosenblum,et al.  Dose-Dependent Effects of Platelet-Derived Growth Factor-B on Glial Tumorigenesis , 2004, Cancer Research.

[54]  K. Willecke,et al.  hGFAP‐cre transgenic mice for manipulation of glial and neuronal function in vivo , 2001, Genesis.

[55]  D. Louis,et al.  PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. , 2001, Genes & development.

[56]  D. Church,et al.  Generation of RCAS vectors useful for functional genomic analyses. , 2001, DNA research : an international journal for rapid publication of reports on genes and genomes.

[57]  H. Varmus,et al.  Development of a flexible and specific gene delivery system for production of murine tumor models , 1999, Oncogene.

[58]  O. Kretz,et al.  Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety , 1999, Nature Genetics.

[59]  H. Varmus,et al.  A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. , 1998, Genes & development.

[60]  H. Varmus,et al.  Basic fibroblast growth factor induces cell migration and proliferation after glia-specific gene transfer in mice. , 1998, Proceedings of the National Academy of Sciences of the United States of America.