A novel localization scheme for scalar uncertainties in ensemble-based data assimilation methods

History matching, also known as data assimilation, is an inverse problem with multiple solutions responsible for generating more reliable models for use in decision-making processes. An iterative ensemble-based method (Ensemble Smoother with Multiple Data Assimilation—ES-MDA) has been used to improve the solution of history-matching processes with a technique called distance-dependent localization. In conjunction, ES-MDA and localization can obtain consistent petrophysical images (permeability and porosity). However, the distance-dependent localization technique is not used to update scalar uncertainties, such as relative permeability; therefore, the variability for these properties is excessively reduced, potentially excluding plausible answers. This work presents three approaches to update scalar parameters while increasing the final variability of these uncertainties to better scan the search space. The three approaches that were developed and compared using a benchmark case are: binary correlation coefficient (BCC), based on correlation calculated by ES-MDA through cross-covariance matrix $$C_{\text{MD}}^{\text{f}}$$CMDf (BCC-CMD); BCC, based on a correlation coefficient between the objective functions and scalar uncertainties (R) (BCC–R); and full correlation coefficient (FCC). We used the work of Soares et al. (J Pet Sci Eng 169:110–125, 2018) as a base case to compare the approaches because although it showed good matches with geologically consistent petrophysical images, it generated an excessive reduction in the scalar parameters. BCC-CMD presented similar results to the base case, excessively reducing the variability of the scalar uncertainties. BCC–R increased the variability in the scalar parameters, especially for BCC with a higher threshold value. Finally, FCC found many more potential answers in the search space without impairing data matches and production forecast quality.

[1]  W. B. Whalley,et al.  The use of fractals and pseudofractals in the analysis of two-dimensional outlines: Review and further exploration , 1989 .

[2]  Charles H. Langmuir,et al.  Calculation of phase equilibrium in mineral-melt systems , 1990 .

[3]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[4]  P. Houtekamer,et al.  Data Assimilation Using an Ensemble Kalman Filter Technique , 1998 .

[5]  S. Cohn,et al.  Ooce Note Series on Global Modeling and Data Assimilation Construction of Correlation Functions in Two and Three Dimensions and Convolution Covariance Functions , 2022 .

[6]  T. Bengtsson,et al.  Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants , 2007 .

[7]  Deepak Devegowda,et al.  Streamline-Assisted Ensemble Kalman Filter for Rapid and Continuous Reservoir Model Updating , 2008 .

[8]  Dean S. Oliver,et al.  THE ENSEMBLE KALMAN FILTER IN RESERVOIR ENGINEERING-A REVIEW , 2009 .

[9]  D. Oliver,et al.  Recent progress on reservoir history matching: a review , 2011 .

[10]  A. Reynolds,et al.  Combining sensitivities and prior information for covariance localization in the ensemble Kalman filter for petroleum reservoir applications , 2011 .

[11]  Á. Yustres,et al.  A review of Markov Chain Monte Carlo and information theory tools for inverse problems in subsurface flow , 2011, Computational Geosciences.

[12]  Shingo Watanabe,et al.  Use of Phase Streamlines for Covariance Localization in Ensemble Kalman Filter for Three-Phase History Matching , 2012 .

[13]  Albert C. Reynolds,et al.  Ensemble smoother with multiple data assimilation , 2013, Comput. Geosci..

[14]  Dean S. Oliver,et al.  History Matching Of The Norne Full Field Model Using An Iterative Ensemble Smoother , 2013 .

[15]  Dean S. Oliver,et al.  History Matching of the Norne Full-Field Model With an Iterative Ensemble Smoother , 2014 .

[16]  Denis José Schiozer,et al.  UNISIM-I: Synthetic Model for Reservoir Development and Management Applications , 2015 .

[17]  Denis José Schiozer,et al.  Simultaneous History-Matching Approach by Use of Reservoir-Characterization and Reservoir-Simulation Studies , 2016 .

[18]  Denis José Schiozer,et al.  Probabilistic history matching using discrete Latin Hypercube sampling and nonparametric density estimation , 2016 .

[19]  Alexandre A. Emerick Analysis of the performance of ensemble-based assimilation of production and seismic data , 2016 .

[20]  Denis José Schiozer,et al.  Field Development Process Revealing Uncertainty Assessment Pitfalls , 2016 .

[21]  Paulo Couto,et al.  History matching and production optimization under uncertainties – Application of closed-loop reservoir management , 2017 .

[22]  Tuhin Bhakta,et al.  Data Driven Adaptive Localization With Applications To Ensemble-Based 4D Seismic History Matching , 2017 .

[23]  Denis José Schiozer,et al.  Applying a localization technique to Kalman Gain and assessing the influence on the variability of models in history matching , 2018, Journal of Petroleum Science and Engineering.

[24]  Alexandre A. Emerick,et al.  Methods to mitigate loss of variance due to sampling errors in ensemble data assimilation with non-local model parameters , 2019, Journal of Petroleum Science and Engineering.