Mixing sauces

The materials around us usually exist as mixtures of constituents, each constituent with possibly a different elasto-viscoplastic property. How can we describe the material property of such a mixture is the core question of this paper. We propose a nonlinear blending model that can capture intriguing flowing behaviors that can differ from that of the individual constituents (Fig. 1). We used a laboratory device, rheometer, to measure the flowing properties of various fluid-like foods, and found that an elastic Herschel-Bulkley model has nice agreements with the measured data even for the mixtures of these foods. We then constructed a blending model such that it qualitatively agrees with the measurements and is closed in the parameter space of the elastic Herschel-Bulkley model. We provide validations through comparisons between the measured and estimated properties using our model, and comparisons between simulated examples and captured footages. We show the utility of our model for producing interesting behaviors of various mixtures.

[1]  S. Arrhenius Über die Dissociation der in Wasser gelösten Stoffe , 1887 .

[2]  A. Noyes,et al.  The rate of solution of solid substances in their own solutions , 1897 .

[3]  J. Kendall,et al.  THE VISCOSITY OF LIQUIDS. II. THE VISCOSITY-COMPOSITION CURVE FOR IDEAL LIQUID MIXTURES.1 , 1917 .

[4]  Winslow H. Herschel,et al.  Konsistenzmessungen von Gummi-Benzollösungen , 1926 .

[5]  J. Frenkel The Viscosity of Liquids. , 1930, Nature.

[6]  E. Lederer Zur Theorie der Viskosität von Flüssigkeiten , 1931, Kolloid-Beihefte.

[7]  E. C. Bingham,et al.  The Mixture Law , 1932 .

[8]  J. Oldroyd On the formulation of rheological equations of state , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[9]  D. C. Drucker,et al.  Soil mechanics and plastic analysis or limit design , 1952 .

[10]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[11]  P. Carreau Rheological Equations from Molecular Network Theories , 1972 .

[12]  Michael Rusin The structure of nonlinear blending models , 1975 .

[13]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[14]  K. Yasuda Investigation of the analogies between viscometric and linear viscoelastic properties of polystyrene fluids , 1979 .

[15]  Demetri Terzopoulos,et al.  Modeling inelastic deformation: viscolelasticity, plasticity, fracture , 1988, SIGGRAPH.

[16]  J. C. Simo,et al.  A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multipli , 1988 .

[17]  J. C. Simo,et al.  A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. part II: computational aspects , 1988 .

[18]  D. Sulsky,et al.  A particle method for history-dependent materials , 1993 .

[19]  D. Sulsky Erratum: Application of a particle-in-cell method to solid mechanics , 1995 .

[20]  Dimitris N. Metaxas,et al.  Realistic Animation of Liquids , 1996, Graphics Interface.

[21]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[22]  Ronald Fedkiw,et al.  Practical animation of liquids , 2001, SIGGRAPH.

[23]  Ronald Fedkiw,et al.  Animation and rendering of complex water surfaces , 2002, ACM Trans. Graph..

[24]  Greg Turk,et al.  Melting and flowing , 2002, SCA '02.

[25]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[26]  S. Bardenhagen,et al.  The Generalized Interpolation Material Point Method , 2004 .

[27]  Matthias Teschner,et al.  Interaction of fluids with deformable solids: Research Articles , 2004 .

[28]  Mark Carlson,et al.  Rigid fluid: animating the interplay between rigid bodies and fluid , 2004, SIGGRAPH 2004.

[29]  James F. O'Brien,et al.  A method for animating viscoelastic fluids , 2004, SIGGRAPH 2004.

[30]  Ronald Fedkiw,et al.  Invertible finite elements for robust simulation of large deformation , 2004, SCA '04.

[31]  Markus H. Gross,et al.  Particle-based fluid-fluid interaction , 2005, SCA '05.

[32]  Philippe Beaudoin,et al.  Particle-based viscoelastic fluid simulation , 2005, SCA '05.

[33]  Jeong-Mo Hong,et al.  Discontinuous fluids , 2005, SIGGRAPH 2005.

[34]  Yongning Zhu,et al.  Animating sand as a fluid , 2005, SIGGRAPH 2005.

[35]  Ronald Fedkiw,et al.  Multiple interacting liquids , 2006, SIGGRAPH 2006.

[36]  Ronald Fedkiw,et al.  Melting and burning solids into liquids and gases , 2006, IEEE Transactions on Visualization and Computer Graphics.

[37]  Afonso Paiva,et al.  Particle-based non-Newtonian fluid animation for melting objects , 2006, 2006 19th Brazilian Symposium on Computer Graphics and Image Processing.

[38]  Yee-Hong Yang,et al.  Particle-based immiscible fluid-fluid collision , 2006, Graphics Interface.

[39]  Matthias Müller,et al.  Position based dynamics , 2007, J. Vis. Commun. Image Represent..

[40]  Greg Turk,et al.  A finite element method for animating large viscoplastic flow , 2007, SIGGRAPH 2007.

[41]  Renato Pajarola,et al.  A unified particle model for fluid–solid interactions , 2007, Comput. Animat. Virtual Worlds.

[42]  Soon Hyoung Pyo,et al.  Bubbling and frothing liquids , 2007, SIGGRAPH 2007.

[43]  Matthias Teschner,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Weakly Compressible Sph for Free Surface Flows , 2022 .

[44]  Robert Bridson,et al.  A fast variational framework for accurate solid-fluid coupling , 2007, SIGGRAPH 2007.

[45]  B. Adams,et al.  Porous flow in particle-based fluid simulations , 2008, SIGGRAPH 2008.

[46]  Ronald Fedkiw,et al.  Two-way coupling of fluids to rigid and deformable solids and shells , 2008, ACM Trans. Graph..

[47]  Sung Yong Shin,et al.  A unified handling of immiscible and miscible fluids , 2008, Comput. Animat. Virtual Worlds.

[48]  G. Turk,et al.  Fast viscoelastic behavior with thin features , 2008, SIGGRAPH 2008.

[49]  Matthias Teschner,et al.  Corotated SPH for Deformable Solids , 2009, NPH.

[50]  R. Pajarola,et al.  Predictive-corrective incompressible SPH , 2009, SIGGRAPH 2009.

[51]  Enhua Wu,et al.  A particle-based method for viscoelastic fluids animation , 2009, VRST '09.

[52]  M. Gross,et al.  Deforming meshes that split and merge , 2009, SIGGRAPH 2009.

[53]  Afonso Paiva,et al.  Particle-based viscoplastic fluid/solid simulation , 2009, Comput. Aided Des..

[54]  Adam W. Bargteil,et al.  A point-based method for animating elastoplastic solids , 2009, SCA '09.

[55]  E. Vouga,et al.  Discrete viscous threads , 2010, SIGGRAPH 2010.

[56]  Chang-Hun Kim,et al.  Hybrid Simulation of Miscible Mixing with Viscous Fingering , 2010, Comput. Graph. Forum.

[57]  Ming C. Lin,et al.  Free-flowing granular materials with two-way solid coupling , 2010, SIGGRAPH 2010.

[58]  Byungmoon Kim Multi-phase fluid simulations using regional level sets , 2010, SIGGRAPH 2010.

[59]  R. Bridson,et al.  Matching fluid simulation elements to surface geometry and topology , 2010, SIGGRAPH 2010.

[60]  James F. O'Brien,et al.  Dynamic local remeshing for elastoplastic simulation , 2010, SIGGRAPH 2010.

[61]  A. Sadeghirad,et al.  A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations , 2011 .

[62]  Eitan Grinspun,et al.  Discrete viscous sheets , 2012, ACM Trans. Graph..

[63]  Alexey Stomakhin,et al.  A material point method for snow simulation , 2013, ACM Trans. Graph..

[64]  Christopher Wojtan,et al.  Highly adaptive liquid simulations on tetrahedral meshes , 2013, ACM Trans. Graph..

[65]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .

[66]  James F. O'Brien,et al.  Simulating liquids and solid-liquid interactions with lagrangian meshes , 2013, TOGS.

[67]  Miles Macklin,et al.  Position based fluids , 2013, ACM Trans. Graph..

[68]  Matthias Teschner,et al.  Implicit Incompressible SPH , 2014, IEEE Transactions on Visualization and Computer Graphics.

[69]  Ben Jones,et al.  Deformation embedding for point-based elastoplastic simulation , 2014, TOGS.

[70]  Shi-Min Hu,et al.  Multiple-Fluid SPH Simulation Using a Mixture Model , 2014, ACM Trans. Graph..

[71]  Kenny Erleben,et al.  Multiphase Flow of Immiscible Fluids on Unstructured Moving Meshes , 2014, IEEE Transactions on Visualization and Computer Graphics.

[72]  Chenfanfu Jiang,et al.  Augmented MPM for phase-change and varied materials , 2014, ACM Trans. Graph..

[73]  Bo Ren,et al.  Fast multiple-fluid simulation using Helmholtz free energy , 2015, ACM Trans. Graph..

[74]  Yue Gao,et al.  A Level-Set Method for Skinning Animated Particle Data , 2015, IEEE Trans. Vis. Comput. Graph..

[75]  Matthias Teschner,et al.  An implicit viscosity formulation for SPH fluids , 2015, ACM Trans. Graph..

[76]  Chenfanfu Jiang,et al.  The affine particle-in-cell method , 2015, ACM Trans. Graph..

[77]  Jan Bender,et al.  Divergence-free smoothed particle hydrodynamics , 2015, Symposium on Computer Animation.

[78]  Ronald Fedkiw,et al.  Codimensional non-Newtonian fluids , 2015, ACM Trans. Graph..

[79]  K. Kamrin,et al.  Continuum modelling and simulation of granular flows through their many phases , 2014, Journal of Fluid Mechanics.

[80]  Chenfanfu Jiang,et al.  A material point method for viscoelastic fluids, foams and sponges , 2015, Symposium on Computer Animation.

[81]  Eitan Grinspun,et al.  Continuum Foam , 2015, ACM Trans. Graph..

[82]  Ralph R. Martin,et al.  Multiphase SPH simulation for interactive fluids and solids , 2016, ACM Trans. Graph..

[83]  Florence Bertails-Descoubes,et al.  A semi-implicit material point method for the continuum simulation of granular materials , 2016, ACM Trans. Graph..

[84]  Andre Pradhana,et al.  Drucker-prager elastoplasticity for sand animation , 2016, ACM Trans. Graph..

[85]  Chenfanfu Jiang,et al.  The material point method for simulating continuum materials , 2016, SIGGRAPH Courses.

[86]  Rüdiger Westermann,et al.  Narrow Band FLIP for Liquid Simulations , 2016, Comput. Graph. Forum.

[87]  Ken Museth,et al.  Animation of crack propagation by means of an extended multi-body solver for the material point method , 2017, Comput. Graph..

[88]  Chenfanfu Jiang,et al.  Anisotropic elastoplasticity for cloth, knit and hair frictional contact , 2017, ACM Trans. Graph..

[89]  Eftychios Sifakis,et al.  An adaptive generalized interpolation material point method for simulating elastoplastic materials , 2017, ACM Trans. Graph..

[90]  Ralph R. Martin,et al.  Pairwise Force SPH Model for Real-Time Multi-Interaction Applications , 2017, IEEE Transactions on Visualization and Computer Graphics.

[91]  A. Pradhana Multiphase Simulation Using Material Point Method , 2017 .

[92]  Chenfanfu Jiang,et al.  Multi-species simulation of porous sand and water mixtures , 2017, ACM Trans. Graph..

[93]  Yong Tang,et al.  Dynamically Enriched MPM for Invertible Elasticity , 2017, Comput. Graph. Forum.

[94]  Miguel A. Otaduy,et al.  Conformation constraints for efficient viscoelastic fluid simulation , 2017, ACM Trans. Graph..

[95]  Robert Bridson,et al.  Variational stokes , 2017, ACM Trans. Graph..

[96]  Fabio Bacchini,et al.  A new Particle-in-Cell method for modeling magnetized fluids , 2017, Comput. Phys. Commun..

[97]  Ralph R. Martin,et al.  A unified particle system framework for multi-phase, multi-material visual simulations , 2017, ACM Trans. Graph..

[98]  Chenfanfu Jiang,et al.  A polynomial particle-in-cell method , 2017, ACM Trans. Graph..

[99]  Shi-Min Hu,et al.  A Temporally Adaptive Material Point Method with Regional Time Stepping , 2018, Comput. Graph. Forum.

[100]  X. Yan,et al.  MPM simulation of interacting fluids and solids , 2018, Comput. Graph. Forum.

[101]  Eitan Grinspun,et al.  Hybrid grains , 2018, ACM Trans. Graph..

[102]  Andre Pradhana,et al.  A moving least squares material point method with displacement discontinuity and two-way rigid body coupling , 2018, ACM Trans. Graph..

[103]  Andre Pradhana,et al.  GPU optimization of material point methods , 2018, ACM Trans. Graph..

[104]  Ming Gao,et al.  Animating fluid sediment mixture in particle-laden flows , 2018, ACM Trans. Graph..

[105]  Huamin Wang,et al.  Projective Peridynamics for Modeling Versatile Elastoplastic Materials , 2018, IEEE Transactions on Visualization and Computer Graphics.

[106]  C. C. Long,et al.  Modeling strong discontinuities in the material point method using a single velocity field , 2019, Computer Methods in Applied Mechanics and Engineering.