Optimality conditions for generalized differentiable interval-valued functions

In this paper we study the optimal solutions set for a generalized differentiable interval-valued function. Necessary and sufficient optimality conditions are established for gH-differentiable functions. Convexity assumptions that are necessary or required to ensure the characterization of the optimal solutions are weaker or less strict than those presented in previous works. These convexity assumptions are the weakest to characterize the optimal solutions set. Known results for classical non interval-valued optimization are particular cases of the ones proved here.

[1]  Guohe Huang,et al.  An interval-valued minimax-regret analysis approach for the identification of optimal greenhouse-gas abatement strategies under uncertainty , 2011 .

[2]  Humberto Bustince,et al.  Medical diagnosis of cardiovascular diseases using an interval-valued fuzzy rule-based classification system , 2014, Appl. Soft Comput..

[3]  L. Ji,et al.  An inexact two-stage stochastic robust programming for residential micro-grid management-based on random demand , 2014 .

[4]  Ming Wang,et al.  Uncertainty degree and modeling of interval type-2 fuzzy sets: Definition, method and application , 2013, Comput. Math. Appl..

[5]  Yurilev Chalco-Cano,et al.  Calculus for interval-valued functions using generalized Hukuhara derivative and applications , 2013, Fuzzy Sets Syst..

[6]  F. S. De Blasi,et al.  On the differentiability of multifunctions , 1976 .

[7]  Hsien-Chung Wu,et al.  The Karush-Kuhn-Tucker optimality conditions for multi-objective programming problems with fuzzy-valued objective functions , 2009, Fuzzy Optim. Decis. Mak..

[8]  Hsien-Chung Wu,et al.  The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function , 2007, Eur. J. Oper. Res..

[9]  G. Jahanshahloo Data Envelopment Analysis with Imprecise Data , 2011 .

[10]  M. Hukuhara INTEGRATION DES APPLICAITONS MESURABLES DONT LA VALEUR EST UN COMPACT CONVEXE , 1967 .

[11]  Bijay Baran Pal,et al.  A priority-based goal programming method for solving academic personnel planning problems with interval-valued resource goals in university management system , 2012 .

[12]  G. P. Liu,et al.  A nonlinear interval number programming method for uncertain optimization problems , 2008, Eur. J. Oper. Res..

[13]  Luciano Stefanini,et al.  Some notes on generalized Hukuhara differentiability of interval-valued functions and interval differential equations , 2012 .

[14]  Barnabás Bede,et al.  Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations , 2005, Fuzzy Sets Syst..

[15]  A. L. Soyster,et al.  Inexact linear programming with generalized resource sets , 1979 .

[16]  H. Ishibuchi,et al.  Multiobjective programming in optimization of the interval objective function , 1990 .

[17]  Masahiro Inuiguchi,et al.  Minimax regret solution to linear programming problems with an interval objective function , 1995 .

[18]  S. Chanas,et al.  Multiobjective programming in optimization of interval objective functions -- A generalized approach , 1996 .

[19]  M. Puri,et al.  DIFFERENTIAL FOR FUZZY FUNCTION , 1983 .

[20]  Bijay Baran Pal,et al.  A priority based interval-valued Goal Programming approach for land utilization planning in agricultural system: A case study , 2010, 2010 Second International conference on Computing, Communication and Networking Technologies.

[21]  M. A. Hanson On sufficiency of the Kuhn-Tucker conditions , 1981 .

[22]  D. H. Martin The essence of invexity , 1985 .

[23]  A. G. Ibrahim,et al.  On the differentiability of set-valued functions defined on a Banach space and mean value theorem , 1996 .

[24]  Hsien-Chung Wu Wolfe Duality for Interval-Valued Optimization , 2008 .

[25]  B. Craven Invex functions and constrained local minima , 1981, Bulletin of the Australian Mathematical Society.

[26]  Y Chalco Cano,et al.  GENERALIZED DERIVATIVE AND -DERIVATIVE FOR SET-VALUED FUNCTIONS , 2011 .

[27]  Izhar Ahmad,et al.  On sufficiency and duality for a class of interval-valued programming problems , 2011, Appl. Math. Comput..

[28]  Hsien-Chung Wu On interval-valued nonlinear programming problems , 2008 .

[29]  M. Inuiguchi,et al.  Goal programming problems with interval coefficients and target intervals , 1991 .

[30]  T. Allahviranloo,et al.  Note on ''Generalized Hukuhara differentiability of interval-valued functions and interval differential equations'' , 2012 .