Developmental transcriptional control of mitochondrial homeostasis is required for activity-dependent synaptic connectivity

During neuronal circuit formation, local control of axonal organelles ensures proper synaptic connectivity. Whether this process is genetically encoded is unclear and if so, its developmental regulatory mechanisms remain to be identified. We hypothesized that developmental transcription factors regulate critical parameters of organelle homeostasis that contribute to circuit wiring. We combined cell type-specific transcriptomics with a genetic screen to discover such factors. We identified Telomeric Zinc finger-Associated Protein (TZAP) as a temporal developmental regulator of neuronal mitochondrial homeostasis genes, including Pink1. In Drosophila, loss of dTzap function during visual circuit development leads to loss of activity-dependent synaptic connectivity, that can be rescued by Pink1 expression. At the cellular level, loss of dTzap/TZAP leads to defects in mitochondrial morphology, attenuated calcium uptake and reduced synaptic vesicle release in fly and mammalian neurons. Our findings highlight developmental transcriptional regulation of mitochondrial homeostasis as a key factor in activity-dependent synaptic connectivity.

[1]  T. Préat,et al.  Asymmetric activity of NetrinB controls laterality of the Drosophila brain , 2023, Nature Communications.

[2]  M. Shokhirev,et al.  Telomere-to-mitochondria signalling by ZBP1 mediates replicative crisis , 2023, Nature.

[3]  S. Aerts,et al.  Mitochondria metabolism sets the species-specific tempo of neuronal development , 2023, Science.

[4]  Hamed Haseli Mashhadi,et al.  The International Mouse Phenotyping Consortium: comprehensive knockout phenotyping underpinning the study of human disease , 2022, Nucleic Acids Res..

[5]  Kaspar Podgorski,et al.  Activity-driven synaptic translocation of LGI1 controls excitatory neurotransmission , 2023, bioRxiv.

[6]  Xinnan Wang,et al.  Mitochondrial heterogeneity and homeostasis through the lens of a neuron , 2022, Nature Metabolism.

[7]  Xingyu Gao,et al.  Telomeres and Mitochondrial Metabolism: Implications for Cellular Senescence and Age-related Diseases , 2022, Stem Cell Reviews and Reports.

[8]  Bassem A. Hassan,et al.  A critical developmental interval of coupling axon branching to synaptic degradation during neural circuit formation , 2022, bioRxiv.

[9]  Z. Sheng,et al.  Programming axonal mitochondrial maintenance and bioenergetics in neurodegeneration and regeneration , 2022, Neuron.

[10]  D. Kleinfeld,et al.  Glutamate indicators with improved activation kinetics and localization for imaging synaptic transmission , 2022, bioRxiv.

[11]  Justus M. Kebschull,et al.  Temporal controls over inter-areal cortical projection neuron fate diversity , 2021, Nature.

[12]  L. Luo,et al.  Transcription factor Acj6 controls dendrite targeting via a combinatorial cell-surface code , 2021, Neuron.

[13]  J. Briscoe,et al.  A shared transcriptional code orchestrates temporal patterning of the central nervous system , 2021, PLoS biology.

[14]  C. Desplan,et al.  Neural specification, targeting, and circuit formation during visual system assembly , 2021, Proceedings of the National Academy of Sciences.

[15]  M. Srougi,et al.  Hypothesis: The triad androgen receptor, zinc finger proteins and telomeres modulates the global gene expression pattern during prostate cancer progression. , 2021, Medical hypotheses.

[16]  S. Zipursky,et al.  A Global Temporal Genetic Program for Neural Circuit Formation , 2020, bioRxiv.

[17]  Rana N. El-Danaf,et al.  Neuronal diversity and convergence in a visual system developmental atlas , 2020, Nature.

[18]  J. Sanes,et al.  Synaptic Specificity, Recognition Molecules, and Assembly of Neural Circuits , 2020, Cell.

[19]  Robert A. Carrillo,et al.  Temporal transcription factors determine circuit membership by permanently altering motor neuron-to-muscle synaptic partnerships , 2020, bioRxiv.

[20]  Bassem A. Hassan,et al.  A neurodevelopmental origin of behavioral individuality in the Drosophila visual system , 2020, Science.

[21]  Jihyoung Cho,et al.  TZAP Mutation Leads to Poor Prognosis of Patients with Breast Cancer † , 2019, Medicina.

[22]  Tommy L. Lewis,et al.  Pleiotropic Mitochondria: The Influence of Mitochondria on Neuronal Development and Disease , 2019, The Journal of Neuroscience.

[23]  Bassem A. Hassan,et al.  Autophagy-dependent filopodial kinetics restrict synaptic partner choice during Drosophila brain wiring , 2019, Nature Communications.

[24]  T. A. Ryan,et al.  Molecular Tuning of the Axonal Mitochondrial Ca2+ Uniporter Ensures Metabolic Flexibility of Neurotransmission , 2019, Neuron.

[25]  M. Boutros,et al.  A large-scale resource for tissue-specific CRISPR mutagenesis in Drosophila , 2019, bioRxiv.

[26]  C. Doe,et al.  Regulation of subcellular dendritic synapse specificity by axon guidance cues , 2019, bioRxiv.

[27]  H. Prado-Garcia,et al.  Mitochondrial calcium: Transport and modulation of cellular processes in homeostasis and cancer (Review). , 2019, International journal of oncology.

[28]  C. Doe,et al.  The Hunchback temporal transcription factor determines motor neuron axon and dendrite targeting in Drosophila , 2019, Development.

[29]  V. J. Dercksen,et al.  Serial synapse formation through filopodial competition for synaptic seeding factors , 2018, bioRxiv.

[30]  P. Verstreken,et al.  A Single-Cell Transcriptome Atlas of the Aging Drosophila Brain , 2018, Cell.

[31]  A. Wodarz,et al.  Myc and the Tip60 chromatin remodeling complex control neuroblast maintenance and polarity in Drosophila , 2018, The EMBO journal.

[32]  P. Hiesinger,et al.  Live Observation of Two Parallel Membrane Degradation Pathways at Axon Terminals , 2018, Current Biology.

[33]  F. Polleux,et al.  MFF-dependent mitochondrial fission regulates presynaptic release and axon branching by limiting axonal mitochondria size , 2018, Nature Communications.

[34]  R. Youle,et al.  Mitophagy and Quality Control Mechanisms in Mitochondrial Maintenance , 2018, Current Biology.

[35]  Mark Gerstein,et al.  The ModERN Resource: Genome-Wide Binding Profiles for Hundreds of Drosophila and Caenorhabditis elegans Transcription Factors , 2017, Genetics.

[36]  Mark Johnson,et al.  Transsynaptic Mapping of Second-Order Taste Neurons in Flies by trans-Tango , 2017, Neuron.

[37]  T. Schwarz,et al.  Mitostasis in Neurons: Maintaining Mitochondria in an Extended Cellular Architecture , 2017, Neuron.

[38]  T. Préat,et al.  Upregulated energy metabolism in the Drosophila mushroom body is the trigger for long-term memory , 2017, Nature Communications.

[39]  F. Buchholz,et al.  ZBTB48 is both a vertebrate telomere‐binding protein and a transcriptional activator , 2017, EMBO reports.

[40]  R. Sandberg,et al.  Laser capture microscopy coupled with Smart-seq2 for precise spatial transcriptomic profiling , 2016, Nature Communications.

[41]  D. Chan,et al.  A novel de novo dominant negative mutation in DNM1L impairs mitochondrial fission and presents as childhood epileptic encephalopathy , 2016, American journal of medical genetics. Part A.

[42]  D. Kerschensteiner,et al.  Dendritic mitochondria reach stable positions during circuit development , 2016, eLife.

[43]  Bassem A. Hassan,et al.  Beyond Molecular Codes: Simple Rules to Wire Complex Brains , 2015, Cell.

[44]  Lani F. Wu,et al.  The Developmental Rules of Neural Superposition in Drosophila , 2015, Cell.

[45]  M. Radisic,et al.  Mitochondrial Hyperfusion during Oxidative Stress Is Coupled to a Dysregulation in Calcium Handling within a C2C12 Cell Model , 2013, PloS one.

[46]  F. Polleux,et al.  Terminal Axon Branching Is Regulated by the LKB1-NUAK1 Kinase Pathway via Presynaptic Mitochondrial Capture , 2013, Cell.

[47]  Bassem A. Hassan,et al.  Mutual inhibition among postmitotic neurons regulates robustness of brain wiring in Drosophila , 2013, eLife.

[48]  T. Ahmad,et al.  Computational classification of mitochondrial shapes reflects stress and redox state , 2013, Cell Death and Disease.

[49]  J. Wessnitzer,et al.  Open Source Tracking and Analysis of Adult Drosophila Locomotion in Buridan's Paradigm with and without Visual Targets , 2012, PloS one.

[50]  R. Rodenburg,et al.  Depletion of PINK1 affects mitochondrial metabolism, calcium homeostasis and energy maintenance , 2011, Journal of Cell Science.

[51]  L. Scorrano,et al.  During autophagy mitochondria elongate, are spared from degradation and sustain cell viability , 2011, Nature Cell Biology.

[52]  D. N. Cox,et al.  Laser capture microdissection of Drosophila peripheral neurons. , 2010, Journal of visualized experiments : JoVE.

[53]  James J. L. Hodge,et al.  Ion Channels to Inactivate Neurons in Drosophila , 2009, Front. Mol. Neurosci..

[54]  N. Wood,et al.  PINK1 function in health and disease , 2009, EMBO molecular medicine.

[55]  A. Nern,et al.  Local N-Cadherin Interactions Mediate Distinct Steps in the Targeting of Lamina Neurons , 2008, Neuron.

[56]  D. Chan,et al.  Functions and dysfunctions of mitochondrial dynamics , 2007, Nature Reviews Molecular Cell Biology.

[57]  B. Loppin,et al.  The Essential Role of Drosophila HIRA for De Novo Assembly of Paternal Chromatin at Fertilization , 2007, PLoS genetics.

[58]  Bassem A. Hassan,et al.  A Signaling Network for Patterning of Neuronal Connectivity in the Drosophila Brain , 2006, PLoS biology.

[59]  D. Chan Mitochondria: Dynamic Organelles in Disease, Aging, and Development , 2006, Cell.

[60]  B. Loppin,et al.  The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus , 2005, Nature.

[61]  P. Verstreken,et al.  Synaptic Mitochondria Are Critical for Mobilization of Reserve Pool Vesicles at Drosophila Neuromuscular Junctions , 2005, Neuron.

[62]  M. Gatti,et al.  The mechanism of telomere protection: a comparison between Drosophila and humans , 2005, Chromosoma.

[63]  P. Frachon,et al.  Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. , 2002, Molecular biology of the cell.

[64]  E. Louis Are Drosophila telomeres an exception or the rule? , 2002, Genome Biology.

[65]  Michael N Nitabach,et al.  Electrical Silencing of Drosophila Pacemaker Neurons Stops the Free-Running Circadian Clock , 2002, Cell.

[66]  M. Lipinski,et al.  HIRA is critical for a nucleosome assembly pathway independent of DNA synthesis. , 2002, Molecular cell.

[67]  Bret J. Pearson,et al.  Drosophila Neuroblasts Sequentially Express Transcription Factors which Specify the Temporal Identity of Their Neuronal Progeny , 2001, Cell.

[68]  C. Desplan,et al.  Reinventing a Common Strategy for Patterning the Eye , 2001, Cell.

[69]  J. Rothman,et al.  The use of pHluorins for optical measurements of presynaptic activity. , 2000, Biophysical journal.

[70]  K. Broadie,et al.  Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects , 1995, Neuron.

[71]  S. Strack,et al.  Measuring Mitochondrial Shape with ImageJ , 2017 .

[72]  S. Gupton,et al.  Building Blocks of Functioning Brain: Cytoskeletal Dynamics in Neuronal Development. , 2016, International review of cell and molecular biology.

[73]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[74]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[75]  I. Reynolds,et al.  Mitochondria accumulate Ca2+ following intense glutamate stimulation of cultured rat forebrain neurones. , 1997, Journal of Physiology.