A fast method for robust principal components with applications to chemometrics
暂无分享,去创建一个
[1] P. Rousseeuw,et al. Robust factor analysis , 2003 .
[2] C. Croux,et al. Principal Component Analysis Based on Robust Estimators of the Covariance or Correlation Matrix: Influence Functions and Efficiencies , 2000 .
[3] Katrien van Driessen,et al. A Fast Algorithm for the Minimum Covariance Determinant Estimator , 1999, Technometrics.
[4] D. G. Simpson,et al. Robust principal component analysis for functional data , 2007 .
[5] Paul H. C. Eilers,et al. Generalized linear regression on sampled signals and curves: a P -spline approach , 1999 .
[6] S. D. Jong,et al. The kernel PCA algorithms for wide data. Part I: Theory and algorithms , 1997 .
[7] P. Rousseeuw,et al. Alternatives to the Median Absolute Deviation , 1993 .
[8] E. Ziegel. COMPSTAT: Proceedings in Computational Statistics , 1988 .
[9] Peter J. Rousseeuw,et al. Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.
[10] P. L. Davies,et al. Asymptotic behaviour of S-estimates of multivariate location parameters and dispersion matrices , 1987 .
[11] Guoying Li,et al. Projection-Pursuit Approach to Robust Dispersion Matrices and Principal Components: Primary Theory and Monte Carlo , 1985 .
[12] P. Rousseeuw. Least Median of Squares Regression , 1984 .
[13] T. Fearn,et al. Application of near infrared reflectance spectroscopy to the compositional analysis of biscuits and biscuit doughs , 1984 .
[14] S. J. Devlin,et al. Robust estimation and outlier detection with correlation coefficients , 1975 .