A quantum-limited CMOS-sensor-based high-speed imaging system for time-resolved x-ray scattering

The field of ultrafast x-ray science is flourishing, driven by emerging synchrotron sources (e.g., time-slice storage rings, energy recovery linacs, free electron lasers) capable of fine time resolution. New hybrid x-ray detectors are under development in order to exploit these new capabilities. This paper describes the development of a 2160 x 2560 CMOS image sensor (CIS) system with a 6.5 µm pitch optimized for time-resolved x-ray scattering studies. The system is single photon quantum limited from 8 keV to 20 keV. It has a wide dynamic range and can operate at 100 Hz full-frame and at higher frequencies using a region-of-interest (ROI) readout. Fundamental metrics of linearity, dynamic range, spatial resolution, conversion gain, sensitivity and Detective Quantum Efficiency are estimated. Experimental time-resolved data are also presented.