Identifying Multi-Top Events from Gluino Decay at the LHC

We study the LHC signal of a light gluino whose cascade decay is dominated by channels involving top, and, sometimes, bottom quarks. This is a generic signature for a number of supersymmetry breaking scenarios considered recently, where the squarks are heavier than gauginos. Third generation final states generically dominate since third generation squarks are typically somewhat lighter in these models. At the LHC we demonstrate that early discovery is possible due to the existence of multi-lepton multi-bottom final states which have fairly low Standard Model background. We find that the best discovery channel is 'same sign dilepton'. The relative decay branching ratios into tt, tb and bb states carry important information about the underlying model. Although reconstruction will yield evidence for the existence of top quarks in the event, we demonstrate that identifying multiple top quarks suffers from low efficiency and large combinatorial background, due to the large number of final state particles. We propose a fitting method which takes advantage of excesses in a large number of channels. We demonstrate such a method will allow us to extract information about decay branching ratios with moderate integrated luminosities. In addition, the method also gives an upper bound on the gluino production cross section and an estimate of the gluino mass.

[1]  M. Yamaguchi,et al.  Sparticle masses in deflected mirage mediation , 2008, 0901.0052.

[2]  Tilman Plehn,et al.  Seeking Sgluons , 2008, 0810.3919.

[3]  Joseph Virzi,et al.  Top quark jets at the LHC , 2008, 0810.0934.

[4]  Zhenyu Han,et al.  Top-antitop and top-top resonances in the dilepton channel at the CERN LHC , 2008, 0809.4487.

[5]  C. Vafa,et al.  From F-theory GUTs to the LHC , 2008, 0809.3452.

[6]  F. Petriello,et al.  Grand unification and light color-octet scalars at the LHC , 2008, 0809.2106.

[7]  Joseph Virzi,et al.  Substructure of high-pTjets at the LHC , 2008, Physical Review D.

[8]  K. Zurek,et al.  Moduli stabilization and supersymmetry breaking in deflected mirage mediation , 2008, 0806.2330.

[9]  David E Kaplan,et al.  Top-Tagging: A Method for Identifying Boosted Hadronic Tops , 2008 .

[10]  B. Acharya,et al.  Re-discovery of the top quark at the LHC and first measurements , 2008, 0806.0484.

[11]  Lian-tao Wang,et al.  Strategies to Identify Boosted Tops , 2008, 0806.0023.

[12]  E. Berger,et al.  Trilepton production at the CERN LHC : Standard model sources and beyond , 2008, 0805.3720.

[13]  T. Han The "top Priority" at the Lhc , 2008, 0804.3178.

[14]  K. Zurek,et al.  Deflected mirage mediation: a phenomenological framework for generalized supersymmetry breaking. , 2008, Physical review letters.

[15]  T. Han,et al.  Top-quark pair plus large missing energy at the LHC , 2008, 0803.3820.

[16]  U. Baur,et al.  Searching for tt resonances at the CERN Large Hadron Collider , 2008, 0803.1160.

[17]  M. Takeuchi,et al.  Study of the top reconstruction in top-partner events at the LHC , 2008, 0802.4142.

[18]  C. Dib,et al.  New signature for color octet pseudoscalars at the CERN LHC , 2008, 0802.4303.

[19]  H. Prosper,et al.  Early supersymmetry discovery at the CERN LHC without missingET: The role of multileptons , 2008, 0801.3799.

[20]  P. Langacker,et al.  Aspects of Z′-mediated supersymmetry breaking , 2008, 0801.3693.

[21]  R. Contino,et al.  Discovering the top partners at the LHC using same-sign dilepton final states , 2008, 0801.1679.

[22]  Jing Shao,et al.  The G(2)-MSSM: An M Theory motivated model of Particle Physics , 2008, 0801.0478.

[23]  T. Tait,et al.  Top compositeness at the Tevatron and LHC , 2007, 0712.3057.

[24]  R. Frederix,et al.  Top pair invariant mass distribution: a window on new physics , 2007, 0712.2355.

[25]  Lian-tao Wang,et al.  A higher form (of) mediation , 2007, 0711.3214.

[26]  Michael Gerbush,et al.  Color-octet scalars at the CERN LHC , 2007, 0710.3133.

[27]  K. Kong,et al.  Massive color-octet bosons and pairs of resonances at hadron colliders , 2007, 0709.2378.

[28]  U. Baur,et al.  High p_T Top Quarks at the Large Hadron Collider , 2007, 0707.2066.

[29]  Tim Stelzer,et al.  MadGraph/MadEvent v4: The New Web Generation , 2007, 0706.2334.

[30]  H. Baer,et al.  Precision gluino mass at the CERN LHC in supersymmetric models with decoupled scalars , 2007, hep-ph/0703289.

[31]  B. Knuteson,et al.  MARMOSET: The Path from LHC Data to the New Standard Model via On-Shell Effective Theories , 2007, hep-ph/0703088.

[32]  K. Agashe,et al.  Warped gravitons at the CERN LHC and beyond , 2007, hep-ph/0701186.

[33]  L. Randall,et al.  The Bulk RS KK-gluon at the LHC , 2007, hep-ph/0701166.

[34]  Jared Kaplan,et al.  Searching for the Kaluza-Klein Graviton in Bulk RS Models , 2007, hep-ph/0701150.

[35]  D. Nomura,et al.  Hunting for the top partner in the littlest Higgs model with T parity at the CERN LHC , 2006, hep-ph/0612249.

[36]  A. Belyaev,et al.  CERN LHC signals from warped extra dimensions , 2006, hep-ph/0612015.

[37]  T. Han,et al.  Top-quark pairs at high invariant mass: a model-independent discriminator of new physics at the Large Hadron Collider. , 2006, Physical review letters.

[38]  Alexander Belyaev,et al.  Phenomenology of a littlest Higgs model with T parity: Including effects of T-odd fermions , 2006, hep-ph/0609179.

[39]  A. Freitas,et al.  Phenomenology of mirror fermions in the littlest Higgs model with T-parity , 2006, hep-ph/0609103.

[40]  P. Meade,et al.  Top partners at the CERN LHC: Spin and mass measurement , 2006, hep-ph/0601124.

[41]  Hsin-Chia Cheng,et al.  Top partners in little Higgs theories with T-parity , 2005, hep-ph/0510225.

[42]  P. Slavich,et al.  Gluino Decays in Split Supersymmetry , 2005, hep-ph/0506214.

[43]  J. Wells,et al.  Gluino decays with heavier scalar superpartners , 2005, hep-ph/0503175.

[44]  S. Dimopoulos,et al.  Aspects of Split Supersymmetry , 2004, hep-ph/0409232.

[45]  Savas Dimopoulos,et al.  Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC , 2004, hep-th/0405159.

[46]  J. Lykken,et al.  The Soft supersymmetry breaking Lagrangian: Theory and applications , 2003, hep-ph/0312378.

[47]  G. Polesello,et al.  Measuring the Mass of the Lightest Chargino at the CERN LHC , 2003, hep-ph/0312318.

[48]  K. Kawagoe,et al.  A Detailed Study of the Gluino Decay into the Third Generation Squarks at the CERN LHC , 2003, hep-ph/0304214.

[49]  K. Kawagoe,et al.  Scenery from the top: Study of the third generation squarks at CERN LHC , 2002, hep-ph/0204078.

[50]  S. Mrenna,et al.  Pythia 6.3 physics and manual , 2003, hep-ph/0308153.

[51]  A. Pomarol,et al.  Bulk fields and supersymmetry in a slice of AdS , 2000, hep-ph/0003129.

[52]  R. Bonciani,et al.  NLL resummation of the heavy-quark hadroproduction cross-section , 1998, hep-ph/9801375.

[53]  Baer,et al.  Phenomenology of gluino decays via loops and top-quark Yukawa coupling. , 1990, Physical review. D, Particles and fields.