Scale separation for multi-scale modeling of free-surface and two-phase flows with the conservative sharp interface method

In this paper we present a scale separation approach for multi-scale modeling of free-surface and two-phase flows with complex interface evolution. By performing a stimulus-response operation on the level-set function representing the interface, separation of resolvable and non-resolvable interface scales is achieved efficiently. Uniform positive and negative shifts of the level-set function are used to determine non-resolvable interface structures. Non-resolved interface structures are separated from the resolved ones and can be treated by a mixing model or a Lagrangian-particle model in order to preserve mass. Resolved interface structures are treated by the conservative sharp-interface model. Since the proposed scale separation approach does not rely on topological information, unlike in previous work, it can be implemented in a straightforward fashion into a given level set based interface model. A number of two- and three-dimensional numerical tests demonstrate that the proposed method is able to cope with complex interface variations accurately and significantly increases robustness against underresolved interface structures.

[1]  Peter MacNeice,et al.  Paramesh: A Parallel Adaptive Mesh Refinement Community Toolkit , 2013 .

[2]  James J. Quirk,et al.  On the dynamics of a shock–bubble interaction , 1994, Journal of Fluid Mechanics.

[3]  Nikolaus A. Adams,et al.  Numerical modelling and investigation of symmetric and asymmetric cavitation bubble dynamics , 2012 .

[4]  Kai Schneider,et al.  An adaptive multiresolution scheme with local time stepping for evolutionary PDEs , 2008, J. Comput. Phys..

[5]  Marcus Herrmann,et al.  A parallel Eulerian interface tracking/Lagrangian point particle multi-scale coupling procedure , 2010, J. Comput. Phys..

[6]  S. Osher,et al.  Regular Article: A PDE-Based Fast Local Level Set Method , 1999 .

[7]  Wolfgang Schröder,et al.  The constrained reinitialization equation for level set methods , 2010, J. Comput. Phys..

[8]  John R. Lister,et al.  SELF-SIMILAR CAPILLARY PINCHOFF OF AN INVISCID FLUID , 1997 .

[9]  Diego Rossinelli,et al.  High order finite volume methods on wavelet-adapted grids with local time-stepping on multicore architectures for the simulation of shock-bubble interactions , 2010, J. Comput. Phys..

[10]  S. J. Lind,et al.  Incompressible smoothed particle hydrodynamics for free-surface flows: A generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves , 2012, J. Comput. Phys..

[11]  Nikolaus A. Adams,et al.  On the HLLC Riemann solver for interface interaction in compressible multi-fluid flow , 2009, J. Comput. Phys..

[12]  James Glimm,et al.  Front tracking for hyperbolic systems , 1981 .

[13]  Nikolaus A. Adams,et al.  An adaptive central-upwind weighted essentially non-oscillatory scheme , 2010, J. Comput. Phys..

[14]  M. Chaudhry,et al.  Numerical Simulation of Free-Surface Flows , 1998 .

[15]  J. Haas,et al.  Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities , 1987, Journal of Fluid Mechanics.

[16]  S. Osher,et al.  An improved level set method for incompressible two-phase flows , 1998 .

[17]  P. Smereka,et al.  A Remark on Computing Distance Functions , 2000 .

[18]  Marcus Herrmann,et al.  A balanced force refined level set grid method for two-phase flows on unstructured flow solver grids , 2008, J. Comput. Phys..

[19]  S. Zaleski,et al.  Numerical simulation of droplets, bubbles and waves: state of the art , 2009 .

[20]  Nikolaus A. Adams,et al.  Wavelet-based adaptive multi-resolution solver on heterogeneous parallel architecture for computational fluid dynamics , 2011, Computer Science - Research and Development.

[21]  Dimitris N. Metaxas,et al.  Simulation of two‐phase flow with sub‐scale droplet and bubble effects , 2009, Comput. Graph. Forum.

[22]  A. Harten Adaptive Multiresolution Schemes for Shock Computations , 1994 .

[23]  Frederick Stern,et al.  An improved particle correction procedure for the particle level set method , 2009, J. Comput. Phys..

[24]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[25]  R. Fedkiw,et al.  USING THE PARTICLE LEVEL SET METHOD AND A SECOND ORDER ACCURATE PRESSURE BOUNDARY CONDITION FOR FREE SURFACE FLOWS , 2003 .

[26]  Xiangyu Hu,et al.  An interface interaction method for compressible multifluids , 2004 .

[27]  Albert Cohen,et al.  Fully adaptive multiresolution finite volume schemes for conservation laws , 2003, Math. Comput..

[28]  A. Yarin,et al.  Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity , 1995, Journal of Fluid Mechanics.

[29]  Nikolaus A. Adams,et al.  Scale separation for implicit large eddy simulation , 2011, J. Comput. Phys..

[30]  G. Homsy,et al.  Crown-forming instability phenomena in the drop splash problem. , 2009, Journal of colloid and interface science.

[31]  Nikolaus A. Adams,et al.  A conservative interface method for compressible flows , 2006, J. Comput. Phys..

[32]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[33]  Nikolaus A. Adams,et al.  Adaptive multi-resolution method for compressible multi-phase flows with sharp interface model and pyramid data structure , 2014, J. Comput. Phys..

[34]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[35]  M. Herrmann,et al.  Refined Level Set Grid method for tracking interfaces , 2022 .

[36]  Hariprasad J. Subramani,et al.  Dripping-jetting transitions in a dripping faucet. , 2004, Physical review letters.

[37]  J. Eggers Nonlinear dynamics and breakup of free-surface flows , 1997 .

[38]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[39]  Phillip Colella,et al.  Block structured adaptive mesh and time refinement for hybrid, hyperbolic + N-body systems , 2007, J. Comput. Phys..

[40]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[41]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[42]  Olivier Roussel,et al.  A conservative fully adaptive multiresolution algorithm for parabolic PDEs , 2003 .

[43]  I. Hutchings,et al.  Self-similar breakup of near-inviscid liquids. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Stéphane Popinet,et al.  An accurate adaptive solver for surface-tension-driven interfacial flows , 2009, J. Comput. Phys..

[45]  E. Villermaux,et al.  Physics of liquid jets , 2008 .

[46]  Margaret Martonosi,et al.  Characterizing and improving the performance of Intel Threading Building Blocks , 2008, 2008 IEEE International Symposium on Workload Characterization.

[47]  P. Colella,et al.  An Adaptive Level Set Approach for Incompressible Two-Phase Flows , 1997 .

[48]  Alvin U. Chen,et al.  Computational and experimental analysis of pinch-off and scaling. , 2002, Physical review letters.

[49]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[50]  G. Iaccarino,et al.  Multi-scale modeling of compressible multi-fluid flows with conservative interface method , 2010 .

[51]  Nikolaus A. Adams,et al.  Anti-diffusion interface sharpening technique for two-phase compressible flow simulations , 2012, J. Comput. Phys..

[52]  Richard Saurel,et al.  A compressible flow model with capillary effects , 2005 .

[53]  Wolfgang Schröder,et al.  Differential equation based constrained reinitialization for level set methods , 2008, J. Comput. Phys..

[54]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[55]  S. Zaleski,et al.  Droplet splashing on a thin liquid film , 2003 .

[56]  J. Rappaz,et al.  Regular Article: Numerical Simulation of Free Surface Flows , 1999 .

[57]  Nikolaus A. Adams,et al.  A generalized wall boundary condition for smoothed particle hydrodynamics , 2012, J. Comput. Phys..

[58]  S. Osher,et al.  A PDE-Based Fast Local Level Set Method 1 , 1998 .

[59]  Theo G. Theofanous,et al.  Adaptive characteristics-based matching for compressible multifluid dynamics , 2006, J. Comput. Phys..

[60]  Osman A. Basaran,et al.  Dynamics and breakup of a contracting liquid filament , 2004, Journal of Fluid Mechanics.