Web video retagging

Tags associated with web videos play a crucial role in organizing and accessing large-scale video collections. However, the raw tag list (RawL) is usually incomplete, imprecise and unranked, which reduces the usability of tags. Meanwhile, compared with studies on improving the quality of web image tags, tags associated with web videos are not studied to the same extent. In this paper, we propose a novel web video tag enhancement approach called video retagging, which aims at producing the more complete, precise, and ranked retagged tag list (RetL) for web videos. Given a web video, video retagging first collect its textually and visually related neighbor videos. All tags attached to the neighbors are treated as possible relevant ones and then RetL is generated by inferring the degree of relevance of the tags from both global and video-specific perspectives, using two different graph based models. Two kinds of experiments, i.e., application-oriented video search and categorization and user-based subjective studies are carried out on a large-scale web video dataset, which demonstrate that in most cases, RetL is better than RawL in terms of completeness, precision and ranking.

[1]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[2]  Laura A. Dabbish,et al.  Labeling images with a computer game , 2004, AAAI Spring Symposium: Knowledge Collection from Volunteer Contributors.

[3]  Latifur Khan,et al.  Image annotations by combining multiple evidence & wordNet , 2005, ACM Multimedia.

[4]  Changhu Wang,et al.  Image annotation refinement using random walk with restarts , 2006, MM '06.

[5]  Shih-Fu Chang,et al.  To search or to label?: predicting the performance of search-based automatic image classifiers , 2006, MIR '06.

[6]  John R. Smith,et al.  Large-scale concept ontology for multimedia , 2006, IEEE MultiMedia.

[7]  Marieke Guy,et al.  Folksonomies: Tidying Up Tags? , 2006, D Lib Mag..

[8]  Wei-Ying Ma,et al.  Bipartite graph reinforcement model for web image annotation , 2007, ACM Multimedia.

[9]  Xian-Sheng Hua,et al.  Multi-modality web video categorization , 2007, MIR '07.

[10]  Sheng Tang,et al.  TRECVID 2007 High-Level Feature Extraction By MCG-ICT-CAS , 2007, TRECVID.

[11]  Changhu Wang,et al.  Content-Based Image Annotation Refinement , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Mor Naaman,et al.  Why we tag: motivations for annotation in mobile and online media , 2007, CHI.

[13]  L. Bécu,et al.  Evidence for three-dimensional unstable flows in shear-banding wormlike micelles. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Shih-Fu Chang,et al.  Video search reranking through random walk over document-level context graph , 2007, ACM Multimedia.

[15]  Chong-Wah Ngo,et al.  Practical elimination of near-duplicates from web video search , 2007, ACM Multimedia.

[16]  Yi-Cheng Zhang,et al.  Bipartite network projection and personal recommendation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Tao Mei,et al.  Correlative multi-label video annotation , 2007, ACM Multimedia.

[18]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[19]  Martin Halvey,et al.  Analysis of online video search and sharing , 2007, HT '07.

[20]  James Ze Wang,et al.  Image retrieval: Ideas, influences, and trends of the new age , 2008, CSUR.

[21]  Lifeng Sun,et al.  Web video topic discovery and tracking via bipartite graph reinforcement model , 2008, WWW.

[22]  Adrian Ulges,et al.  A System That Learns to Tag Videos by Watching Youtube , 2008, ICVS.

[23]  Roelof van Zwol,et al.  Flickr tag recommendation based on collective knowledge , 2008, WWW.

[24]  Claudio Gutierrez,et al.  Survey of graph database models , 2008, CSUR.

[25]  Desney S. Tan,et al.  CueFlik: interactive concept learning in image search , 2008, CHI.

[26]  Stefanie N. Lindstaedt,et al.  Automatic image annotation using visual content and folksonomies , 2009, Multimedia Tools and Applications.

[27]  Hao Xu,et al.  Tag refinement by regularized LDA , 2009, ACM Multimedia.

[28]  Dong Liu,et al.  Tag ranking , 2009, WWW '09.

[29]  Paul Over,et al.  High-level feature detection from video in TRECVid: a 5-year retrospective of achievements , 2009 .

[30]  Xirong Li,et al.  Visual categorization with negative examples for free , 2009, ACM Multimedia.

[31]  Pinar Duygulu Sahin,et al.  Automatic tag expansion using visual similarity for photo sharing websites , 2010, Multimedia Tools and Applications.

[32]  Shuicheng Yan,et al.  Inferring semantic concepts from community-contributed images and noisy tags , 2009, ACM Multimedia.

[33]  Cees Snoek,et al.  Can social tagged images aid concept-based video search? , 2009, 2009 IEEE International Conference on Multimedia and Expo.

[34]  Christos Diou,et al.  Image annotation using clickthrough data , 2009, CIVR '09.

[35]  Mark Sanderson,et al.  Automatic video tagging using content redundancy , 2009, SIGIR.

[36]  Tat-Seng Chua,et al.  NUS-WIDE: a real-world web image database from National University of Singapore , 2009, CIVR '09.

[37]  Marcel Worring,et al.  Learning Social Tag Relevance by Neighbor Voting , 2009, IEEE Transactions on Multimedia.

[38]  Nenghai Yu,et al.  Learning to tag , 2009, WWW '09.

[39]  Yongdong Zhang,et al.  Context-oriented web video tag recommendation , 2010, WWW '10.

[40]  Otis Gospodnetic,et al.  Lucene in Action, Second Edition: Covers Apache Lucene 3.0 , 2010 .

[41]  B. S. Manjunath,et al.  Video Annotation Through Search and Graph Reinforcement Mining , 2010, IEEE Transactions on Multimedia.

[42]  Martin Halvey,et al.  Towards Annotation of Video as Part of Search , 2010, MMM.

[43]  Chong-Wah Ngo,et al.  On the Annotation of Web Videos by Efficient Near-Duplicate Search , 2010, IEEE Transactions on Multimedia.