Local Lyapunov exponents for spatiotemporal chaos.

Local Lyapunov exponents are proposed for characterization of perturbations in distributed dynamical systems with chaotic behavior. Their relation to usual and velocity-dependent exponents is discussed. Local Lyapunov exponents are analytically calculated for coupled map lattices using random field approximation. Boundary Lyapunov exponents describing reflection of perturbations at boundaries are also introduced and calculated.

[1]  A. Crisanti,et al.  Products of random matrices in statistical physics , 1993 .

[2]  K. Kaneko Propagation of disturbance, co-moving Lyapunov exponent and path summation , 1992 .

[3]  S. Ruffo,et al.  Scaling-law for the maximal Lyapunov exponent , 1992 .

[4]  Antonio Politi,et al.  Periodic orbits in coupled Henon maps: Lyapunov and multifractal analysis. , 1992, Chaos.

[5]  Spatial coherence and temporal chaos in macroscopic systems with asymmetrical couplings. , 1992, Physical review letters.

[6]  M. Shlesinger,et al.  Proceedings of the 1st Experimental Chaos Conference , 1992 .

[7]  Müller,et al.  Transversal convection patterns in horizontal shear flow. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[8]  Steinberg,et al.  Noise-modulated propagating pattern in a convectively unstable system. , 1991, Physical review letters.

[9]  Ahlers,et al.  Noise-sustained structure in Taylor-Couette flow with through flow. , 1991, Physical review letters.

[10]  Kunihiko Kaneko,et al.  Globally coupled circle maps , 1991 .

[11]  T. Bohr,et al.  A mechanism for localised turbulence , 1991 .

[12]  Spatio-Temporal Chaos and Localization , 1991 .

[13]  B. Derrida,et al.  Lyapunov exponents of large, sparse random matrices and the problem of directed polymers with complex random weights , 1990 .

[14]  Swinney,et al.  Convective versus absolute instability in flow between counterrotating cylinders. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[15]  S. Ruffo,et al.  Lyapunov spectra of coupled map lattices , 1990 .

[16]  Friedrich H. Busse,et al.  Nonlinear evolution of spatio-temporal structures in dissipative continuous systems , 1990 .

[17]  P. Monkewitz,et al.  LOCAL AND GLOBAL INSTABILITIES IN SPATIALLY DEVELOPING FLOWS , 1990 .

[18]  M. Jensen Boundary layer instability in a coupled-map model , 1989 .

[19]  Spatial development of chaos in nonlinear media , 1989 .

[20]  J. Eckmann,et al.  Liapunov spectra for infinite chains of nonlinear oscillators , 1988 .

[21]  V. Croquette,et al.  Convective Pattern Deformations under Mean Flow Stress , 1987 .

[22]  Kunihiko Kaneko,et al.  Velocity-dependent Lyapunov exponents as a measure of chaos for open-flow systems , 1987 .

[23]  B. Hao,et al.  Directions in chaos , 1987 .

[24]  Antonio Politi,et al.  Distribution of characteristic exponents in the thermodynamic limit , 1986 .

[25]  Eckmann,et al.  Fluctuations of dynamical scaling indices in nonlinear systems. , 1986, Physical review. A, General physics.

[26]  R. Deissler Noise-sustained structure, intermittency, and the Ginzburg-Landau equation , 1985 .

[27]  H. Schuster Deterministic chaos: An introduction , 1984 .

[28]  Hirokazu Fujisaka,et al.  Statistical Dynamics Generated by Fluctuations of Local Lyapunov Exponents , 1983 .

[29]  A. Lichtenberg,et al.  Regular and Stochastic Motion , 1982 .

[30]  R. Evans Physical kinetics. Landau and Lifshitz course of theoretical physics. Vol. 10: By E. M. Lifshitz and L. P. Pitaevskii. Translated by J. B. Sykes and R. N. Franklin. Pp. 452. Pergamon Press, Oxford. 1981. Paperback $25.00 , 1982 .

[31]  B. Derrida Random-energy model: An exactly solvable model of disordered systems , 1981 .

[32]  H. Swinney,et al.  Hydrodynamic instabilities and the transition to turbulence , 1978 .