Congruences for Generalized -Bernoulli Polynomials
暂无分享,去创建一个
[1] Taekyun Kim,et al. p-adic q-integrals associated with the Changhee–Barnes' q-Bernoulli polynomials , 2004 .
[2] P. Young. On the behavior of some two-variable p-adic L-functions , 2003 .
[3] L. CARLITZ. Arithmetic Properties of Generalized Bernoulli Numbers. , 1959 .
[4] Neal Koblitz,et al. On Carlitz's q-Bernoulli numbers , 1982 .
[5] Taekyun Kim. On p-adic q-L-functions and sums of powers , 2002, Discret. Math..
[6] J. Diamond. On the values of p-adic L-functions at positive integers , 1979 .
[7] Taekyun Kim,et al. A note on p-adic Carlitz's q-Bernoulli numbers , 2000, Bulletin of the Australian Mathematical Society.
[8] R. Greenberg,et al. On the behavior ofp-adicL-efunctions ats=0 , 1978 .
[9] J. Diamond. The $p$-adic log gamma function and $p$-adic Euler constants , 1977 .
[10] L. Washington. A note on p-adic L-functions , 1976 .
[11] Taekyun Kim,et al. ON EXPLICIT FORMULAS OF p-ADIC q-L-FUNCTIONS , 1994 .
[12] H. Leopoldt. Eine p-adische Theorie der Zetawerte. II. , 1975 .
[13] G. Fox. A method of Washington applied to the derivation of a two-variable p-adic L-function , 2003 .
[14] N. Koblitz. A new proof of certain formulas for $p$-adic $L$-functions , 1979 .
[16] Leonard Carlitz,et al. $q$-Bernoulli numbers and polynomials , 1948 .
[17] H. S. Gunaratne. A New Generalisation of the Kummer Congruence , 1995 .
[18] Sums of powers of consecutive q-integers , 2005, math/0501531.
[19] Y. Simsek,et al. $q$-Bernoulli Numbers and Polynomials Associated with Multiple $q$-Zeta Functions and Basic $L$-series , 2005, math/0502019.
[20] L. Comtet,et al. Advanced Combinatorics: The Art of Finite and Infinite Expansions , 1974 .