Tolerance and acclimation to zinc of Ceriodaphnia dubia.

[1]  S. M. Nelson,et al.  Evaluation of the Sensitivity of Rapid Toxicity Tests Relative to Daphnid Acute Lethality Tests , 1998, Bulletin of environmental contamination and toxicology.

[2]  A. Münzinger Effects of nickel on daphnia magna during chronic exposure and alterations in the toxicity to generations pre-exposed to nickel , 1990 .

[3]  M. Brouwer,et al.  METAL REGULATION AND MOLTING IN THE BLUE CRAB, CALLINECTES SAPIDUS: METALLOTHIONEIN FUNCTION IN METAL METABOLISM. , 1987, The Biological bulletin.

[4]  Colin R. Janssen,et al.  Multigeneration zinc acclimation and tolerance in Daphnia magna: Implications for water‐quality guidelines and ecological risk assessment , 2001, Environmental toxicology and chemistry.

[5]  R. Eisler Tin Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. , 1989 .

[6]  C. Bodar,et al.  Ecdysteroids in Daphnia magna: their role in moulting and reproduction and their levels upon exposure to cadmium , 1990 .

[7]  J. Diamond,et al.  Evaluation of the water‐effect ratio procedure for metals in a riverine system , 1997 .

[8]  P. Calow,et al.  Induction of cadmium tolerance in two clones of Daphnia magna straus. , 1992, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology.

[9]  R. Henry,et al.  CARBONIC ANHYDRASE ACTIVITY AND CALCIUM DEPOSITION DURING THE MOLT CYCLE OF THE BLUE CRAB CALLINECTES SAPIDUS , 1985 .

[10]  B.-P. Elendt,et al.  Trace nutrient deficiency in Daphnia magna cultured in standard medium for toxicity testing. Effects of the optimization of culture conditions on life history parameters of D. magna , 1990 .

[11]  M. A. Hamilton,et al.  Trimmed Spearman-Karber Method for Estimating Median Lethal Concentrations in Toxicity Bioassays , 1977 .

[12]  D. H. Davidson,et al.  Validation of a four‐day Ceriodaphnia toxicity test and statistical considerations in data analysis , 1991 .

[13]  M. Schubauer-Berigan,et al.  pH‐Dependent toxicity of Cd, Cu, Ni, Pb and Zn to Ceriodaphnia dubia, Pimephales promelas, Hyalella azteca and Lumbriculus variegatus , 1993 .

[14]  J. H. Rodgers,et al.  Transfers and transformations of zinc in flow-through wetland microcosms. , 1999, Ecotoxicology and environmental safety.

[15]  K. Keating,et al.  Inherent Problems in Reconstituted Water , 1989 .

[16]  J. Weis,et al.  Genetic adaptation to heavy metals in aquatic organisms: a review. , 1987, Environmental pollution.

[17]  G. Bitton,et al.  Ceriofast™: An acute toxicity test based on Ceriodaphnia dubia feeding behavior , 1996 .

[18]  K. Keating,et al.  Results of zinc deprivation in daphnid culture , 1997 .

[19]  Scott E. Belanger,et al.  Understanding single‐species and model ecosystem sensitivity: Data‐based comparison , 1999 .

[20]  U. Cowgill,et al.  The Sensitivity ofCeriodaphnia dubia andDaphnia magna to seven chemicals utilizing the three-brood test , 1991 .

[21]  T. Schultz,et al.  Uptake, depuration, and distribution of selenium inDaphnia and its effects on survival and ultrastructure , 1980, Archives of environmental contamination and toxicology.

[22]  K. Keating,et al.  Buffers in daphnid culture and bioassay , 1996 .

[23]  C. Bodar,et al.  Cadmium resistance in Daphnia magna , 1990 .

[24]  G. LeBlanc Laboratory investigation into the development of resistance of Daphnia magna (strauus) to environmental pollutants , 1982 .

[25]  D. Mount,et al.  Use of metal chelating agents to differentiate among sources of acute aquatic toxicity , 1996 .

[26]  F. G. Doherty,et al.  Need for environmental quality guidelines based on ambient freshwater quality criteria in natural waters—case study “zinc” , 1995, Bulletin of environmental contamination and toxicology.