A note on Schur-concave functions

In this paper we consider a class of Schur-concave functions with some measure properties. The isoperimetric inequality and Brunn-Minkowsky’s inequality for such kind of functions are presented. Applications in geometric programming and optimization theory are also derived.MSC:26B25, 26B15, 52A40.

[1]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[2]  Xin-Min Zhang,et al.  Optimization of Schur-convex functions , 1998 .

[3]  Y. Chu,et al.  The Schur multiplicative and harmonic convexities of the complete symmetric function , 2011 .

[4]  Kaizhong Guan,et al.  Schur-convexity of the complete elementary symmetric function , 2006 .

[5]  Ingram Olkin,et al.  Inequalities: Theory of Majorization and Its Application , 1979 .

[6]  M. Mehdi,et al.  On Convex Functions , 1964 .

[7]  Ionel Roventa,et al.  Fan's inequality in geodesic spaces , 2009, Appl. Math. Lett..

[8]  Y. Chu,et al.  Schur convexity and Hadamard's inequality , 2010 .

[9]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[11]  M. Merkle Conditions for convexity of a derivative and applications to the Gamma and Digamma function , 2001 .

[12]  Weifeng Xia,et al.  The schur convexity of gini mean values in the sense of harmonic mean , 2011 .

[13]  Schur-Convexity for a Class of Symmetric Functions , 2012 .

[14]  E. Beckenbach CONVEX FUNCTIONS , 2007 .

[15]  Xin-Min Zhang,et al.  Schur-convex functions and isoperimetric inequalities , 1998 .

[16]  Kaizhong Guan,et al.  Some properties of a class of symmetric functions , 2007 .

[17]  N. Krylov On the general notion of fully nonlinear second-order elliptic equations , 1995 .

[18]  X. M. Zhang,et al.  Convexity of the Integral Arithmetic Mean of a Convex Function , 2010 .

[19]  D. Varberg Convex Functions , 1973 .

[20]  Christodoulos A. Floudas,et al.  Convexity of Products of Univariate Functions and Convexification Transformations for Geometric Programming , 2008 .

[21]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[22]  Constantin P. Niculescu,et al.  Convex Functions and Their Applications: A Contemporary Approach , 2005 .

[23]  Y. Chu,et al.  The Schur Geometrical Convexity of the Extended Mean Values , 2008 .

[24]  Chu Yu-ming,et al.  The Schur harmonic convexity for a class of symmetric functions , 2010 .

[25]  W. Xia,et al.  Solution of an open problem for Schur convexity or concavity of the Gini mean values , 2009 .

[26]  N. Trudinger,et al.  On some inequalities for elementary symmetric functions , 1994, Bulletin of the Australian Mathematical Society.