MHD stagnation point flow and heat transfer in viscoelastic fluid with Cattaneo–Christov heat flux model

Abstract This article presents an analysis of stagnation point of coupled flow and heat transfer of an upper-convected Maxwell fluid over a stretching sheet along with magnetic effects and slip condition at the boundary. The recently proposed Cattaneo–Christov model is employed in the energy equation to investigate the effects of thermal relaxation time. Similarity transformations are adopted to convert the governing partial differential equations into ordinary differential equations. Numerical solution of the system of ODEs is achieved by shooting method together with Runge–Kutta method of order four. The effects of stretching ratio parameter (0 ≤ e ≤ 0.5), elasticity number (0 ≤ β ≤ 1.5), heat flux relaxation time (0 ≤ γ ≤ 1.5), magnetic parameter (0 ≤ M ≤ 1.5), slip coefficient (1 ≤ b ≤ 4) and Prandtl number (0 ≤ Pr ≤ 1.5) on velocity and temperature are investigated graphically and numerically. It is observed that temperature boosts up with an increase in thermal relaxation time.

[1]  M. Turkyilmazoglu Multiple Analytic Solutions of Heat and Mass Transfer of Magnetohydrodynamic Slip Flow for Two Types of Viscoelastic Fluids Over a Stretching Surface , 2012 .

[2]  Christo I. Christov,et al.  On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction , 2009 .

[3]  C. Cattaneo,et al.  Sulla Conduzione Del Calore , 2011 .

[4]  Liancun Zheng,et al.  Boundary layer heat and mass transfer with Cattaneo–Christov double-diffusion in upper-convected Maxwell nanofluid past a stretching sheet with slip velocity , 2016 .

[5]  K. Sadeghy,et al.  The influence of thermal radiation on MHD flow of Maxwellian fluids above stretching sheets , 2009 .

[6]  S. Taghavi,et al.  Stagnation-point flow of upper-convected Maxwell fluids , 2006 .

[7]  T. Y. Na,et al.  Computational methods in engineering boundary value problems , 1979 .

[8]  Navid Freidoonimehr,et al.  Unsteady MHD free convective flow past a permeable stretching vertical surface in a nano-fluid , 2015 .

[9]  Mustafa Turkyilmazoglu,et al.  Equivalences and correspondences between the deforming body induced flow and heat in two-three dimensions , 2016 .

[10]  A. Alsaedi,et al.  Numerical Study of Cattaneo-Christov Heat Flux Model for Viscoelastic Flow Due to an Exponentially Stretching Surface , 2015, PloS one.

[11]  Mohammad Mehdi Rashidi,et al.  Mixed Convective Heat Transfer for MHD Viscoelastic Fluid Flow over a Porous Wedge with Thermal Radiation , 2014 .

[12]  M. Turkyilmazoglu Magnetic Field and Slip Effects on the Flow and Heat Transfer of Stagnation Point Jeffrey Fluid over Deformable Surfaces , 2016 .

[13]  Karl Hiemenz,et al.  Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder , 1911 .

[14]  M. Nandeppanavar,et al.  MHD flow and heat transfer for the upper-convected Maxwell fluid over a stretching sheet , 2012 .

[15]  Luis González-Fernández,et al.  Spectral emissivity of copper and nickel in the mid-infrared range between 250 and 900 °C , 2014, 2401.13074.

[16]  Ahmed Alsaedi,et al.  Stagnation point flow with Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions , 2016 .

[17]  Navid Freidoonimehr,et al.  Entropy analysis for an unsteady MHD flow past a stretching permeable surface in nano-fluid , 2014 .

[18]  Vittorio Zampoli,et al.  A uniqueness result for the Cattaneo–Christov heat conduction model applied to incompressible fluids , 2011 .

[19]  T. Hayat,et al.  Effects of mass transfer on the stagnation point flow of an upper-convected Maxwell (UCM) fluid , 2011 .

[20]  G. Nath,et al.  Steady mixed convection stagnation-point flow of upper convected Maxwell fluids with magnetic field , 2009 .

[21]  John A. Tichy,et al.  Maxwell fluid suction flow in a channel , 1997 .

[22]  Brian Straughan,et al.  Thermal convection with the Cattaneo–Christov model , 2010 .

[23]  Xinxin Zhang,et al.  Coupled flow and heat transfer in viscoelastic fluid with Cattaneo-Christov heat flux model , 2014, Appl. Math. Lett..

[24]  Tasawar Hayat,et al.  Melting heat transfer in the stagnation‐point flow of an upper‐convected Maxwell (UCM) fluid past a stretching sheet , 2012 .

[25]  Mohammad Mehdi Rashidi,et al.  Analytical method for solving steady MHD convective and slip flow due to a rotating disk with viscous dissipation and Ohmic heating , 2012 .

[26]  M. Turkyilmazoglu An analytical treatment for the exact solutions of MHD flow and heat over two–three dimensional deforming bodies , 2015 .

[27]  F. Homann Der Einfluß großer Zähigkeit bei der Strömung um den Zylinder und um die Kugel , 1936 .

[28]  Meraj Mustafa,et al.  Cattaneo-Christov heat flux model for rotating flow and heat transfer of upper-convected Maxwell fluid , 2015 .

[29]  T. Hayat,et al.  MHD boundary-layer flow of an upper-convected Maxwell fluid in a porous channel , 2006 .