The role of material properties for the mechanical adaptation at branch junctions
暂无分享,去创建一个
Peter Fratzl | Ingo Burgert | Jürgen Goebbels | I. Burgert | P. Fratzl | J. Goebbels | Karin Jungnikl | K. Jungnikl
[1] G. Jeronimidis,et al. Biomechanics of a branch – stem junction in softwood , 2006, Trees.
[2] I. Burgert,et al. Adaptive Growth of Gymnosperm Branches-Ultrastructural and Micromechanical Examinations , 2004, Journal of Plant Growth Regulation.
[3] A. Reiterer,et al. Cellulose microfibril angles in a spruce branch and mechanical implications , 2001 .
[4] A. Reiterer,et al. Deformation and energy absorption of wood cell walls with different nanostructure under tensile loading , 2001 .
[5] T Speck,et al. Brittleness of twig bases in the genus Salix: fracture mechanics and ecological relevance. , 2000, Journal of experimental botany.
[6] G. Koch,et al. Biological, Chemical and Mechanical Characteristics of "Wulstholz" as a Response to Mechanical Stress in Living Trees of Picea abies [L.] Karst , 2000 .
[7] K. Niklas,et al. Wind-induced stresses in cherry trees: evidence against the hypothesis of constant stress levels , 2000, Trees.
[8] A. Reiterer,et al. Experimental evidence for a mechanical function of the cellulose microfibril angle in wood cell walls , 1999 .
[9] Claus Mattheck,et al. Design in nature , 1994 .
[10] F. Telewski. Structure and function of flexure wood in Abies fraseri. , 1989, Tree physiology.
[11] Robert R. Archer,et al. Tree Design: Some Biological Solutions to Mechanical Problems , 1979 .
[12] I. D. Cave. The longitudinal Young's modulus of Pinus radiata , 1969, Wood Science and Technology.
[13] R. Trendelenburg. Über Faserstauchungen in Holz und ihre Überwallung durch den Baum , 1940, Holz als Roh- und Werkstoff.
[14] P. Fratzl,et al. Determination of spiral angles of elementary fibrils in the wood cell wall: comparison of small-angle X-ray scattering and wide-angle X-ray diffraction. , 1998 .
[15] A. L. Shigo,et al. A New Tree Biology , 1990 .