The role of material properties for the mechanical adaptation at branch junctions

[1]  G. Jeronimidis,et al.  Biomechanics of a branch – stem junction in softwood , 2006, Trees.

[2]  I. Burgert,et al.  Adaptive Growth of Gymnosperm Branches-Ultrastructural and Micromechanical Examinations , 2004, Journal of Plant Growth Regulation.

[3]  A. Reiterer,et al.  Cellulose microfibril angles in a spruce branch and mechanical implications , 2001 .

[4]  A. Reiterer,et al.  Deformation and energy absorption of wood cell walls with different nanostructure under tensile loading , 2001 .

[5]  T Speck,et al.  Brittleness of twig bases in the genus Salix: fracture mechanics and ecological relevance. , 2000, Journal of experimental botany.

[6]  G. Koch,et al.  Biological, Chemical and Mechanical Characteristics of "Wulstholz" as a Response to Mechanical Stress in Living Trees of Picea abies [L.] Karst , 2000 .

[7]  K. Niklas,et al.  Wind-induced stresses in cherry trees: evidence against the hypothesis of constant stress levels , 2000, Trees.

[8]  A. Reiterer,et al.  Experimental evidence for a mechanical function of the cellulose microfibril angle in wood cell walls , 1999 .

[9]  Claus Mattheck,et al.  Design in nature , 1994 .

[10]  F. Telewski Structure and function of flexure wood in Abies fraseri. , 1989, Tree physiology.

[11]  Robert R. Archer,et al.  Tree Design: Some Biological Solutions to Mechanical Problems , 1979 .

[12]  I. D. Cave The longitudinal Young's modulus of Pinus radiata , 1969, Wood Science and Technology.

[13]  R. Trendelenburg Über Faserstauchungen in Holz und ihre Überwallung durch den Baum , 1940, Holz als Roh- und Werkstoff.

[14]  P. Fratzl,et al.  Determination of spiral angles of elementary fibrils in the wood cell wall: comparison of small-angle X-ray scattering and wide-angle X-ray diffraction. , 1998 .

[15]  A. L. Shigo,et al.  A New Tree Biology , 1990 .